ADD file via upload

main
hnu202409060624 8 months ago
parent b16547b186
commit 06db13138c

@ -0,0 +1,77 @@
import torch
from torch import nn
from attention import MultiHeadAttention
import config
from Feed_Forward import PoswiseFeedForwardNet
from torch_geometric.nn import GCNConv
import math
def get_attn_pad_mask(seq_q, seq_k):
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
# eq(zero) is PAD token
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # batch_size x 1 x len_k(=len_q), one is masking
# 扩展成多维度
return pad_attn_mask.expand(batch_size, len_q, len_k) # batch_size x len_q x len_k
def get_sinusoid_encoding_table(max_len, d_model):
# 创建一个位置编码表,大小为 [max_len, d_model]
position_enc = torch.zeros(max_len, d_model)
# 为每个位置生成编码
for pos in range(max_len):
for i in range(0, d_model, 2):
position_enc[pos, i] = math.sin(pos / (10000 ** (2 * i / d_model)))
position_enc[pos, i + 1] = math.cos(pos / (10000 ** ((2 * (i + 1)) / d_model)))
return position_enc
class EncoderLayer(nn.Module):
def __init__(self):
super(EncoderLayer, self).__init__()
self.conv = GCNConv(config.embedding_dim, config.embedding_dim, normalize=True,bias=config.bias,aggr='mean')
self.conv1 = GCNConv(config.embedding_dim, config.embedding_dim, normalize=True, bias=config.bias, aggr='mean')
self.conv2 = GCNConv(config.embedding_dim, config.embedding_dim, normalize=True, bias=config.bias, aggr='mean')
self.enc_feed_forward1 = PoswiseFeedForwardNet()
self.enc_feed_forward2=PoswiseFeedForwardNet()
self.Model_list=nn.ModuleList([MultiHeadAttention() for _ in range(4)])
def forward(self, enc_inputs,enc2,enc_self_attn_mask,edge_index):
enc_outputs=self.conv(enc_inputs,edge_index)
enc_outputs=self.enc_feed_forward2(enc_outputs)
enc_outputs=self.conv1(enc_outputs,edge_index)
enc_outputs=self.enc_feed_forward2(enc_outputs)
enc_outputs=self.conv2(enc_outputs,edge_index)
enc_outputs=self.enc_feed_forward2(enc_outputs)
attn=0
for i in self.Model_list:
enc2,attn=i(enc2,enc2,enc2,enc_self_attn_mask)
enc2 = self.enc_feed_forward1(enc2)
return enc_outputs,enc2, attn
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
self.embedding1 = nn.Embedding(config.sm_size, config.embedding_dim)
self.attention = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
self.layers = nn.ModuleList([EncoderLayer() for _ in range(config.Encoder_n_layers)])
self.dropout = nn.Dropout(config.dropout)
def forward(self, enc_inputs,edge_index,enc):
enc=self.embedding1(enc)
enc_outputs=self.embedding(enc_inputs)
atoms_enc_self_attns1 = []
enc_self_attn_mask = get_attn_pad_mask(enc.squeeze(0),
enc.squeeze(0))
enc_outputs=enc_outputs.squeeze(0)
edge_index=edge_index.squeeze(0)
enc_outputs=enc_outputs.unsqueeze(0)
for layer in self.layers:
enc_outputs,enc, attn = layer(enc_outputs,enc,enc_self_attn_mask,edge_index)
atoms_enc_self_attns1.append(attn)
return enc_outputs,enc
Loading…
Cancel
Save