From c1370d0e815e12e66ca2d2de075eb8b7695288b1 Mon Sep 17 00:00:00 2001 From: hnu202409060624 <2804411502@qq.com> Date: Mon, 30 Dec 2024 18:29:02 +0800 Subject: [PATCH] Delete 'Encoder.py' --- Encoder.py | 77 ------------------------------------------------------ 1 file changed, 77 deletions(-) delete mode 100644 Encoder.py diff --git a/Encoder.py b/Encoder.py deleted file mode 100644 index d142208..0000000 --- a/Encoder.py +++ /dev/null @@ -1,77 +0,0 @@ -import torch -from torch import nn -from attention import MultiHeadAttention -import config -from Feed_Forward import PoswiseFeedForwardNet -from torch_geometric.nn import GCNConv -import math - -def get_attn_pad_mask(seq_q, seq_k): - batch_size, len_q = seq_q.size() - batch_size, len_k = seq_k.size() - # eq(zero) is PAD token - pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # batch_size x 1 x len_k(=len_q), one is masking - # 扩展成多维度 - return pad_attn_mask.expand(batch_size, len_q, len_k) # batch_size x len_q x len_k - - -def get_sinusoid_encoding_table(max_len, d_model): - # 创建一个位置编码表,大小为 [max_len, d_model] - position_enc = torch.zeros(max_len, d_model) - # 为每个位置生成编码 - for pos in range(max_len): - for i in range(0, d_model, 2): - position_enc[pos, i] = math.sin(pos / (10000 ** (2 * i / d_model))) - position_enc[pos, i + 1] = math.cos(pos / (10000 ** ((2 * (i + 1)) / d_model))) - return position_enc - - -class EncoderLayer(nn.Module): - def __init__(self): - super(EncoderLayer, self).__init__() - self.conv = GCNConv(config.embedding_dim, config.embedding_dim, normalize=True,bias=config.bias,aggr='mean') - self.conv1 = GCNConv(config.embedding_dim, config.embedding_dim, normalize=True, bias=config.bias, aggr='mean') - self.conv2 = GCNConv(config.embedding_dim, config.embedding_dim, normalize=True, bias=config.bias, aggr='mean') - self.enc_feed_forward1 = PoswiseFeedForwardNet() - self.enc_feed_forward2=PoswiseFeedForwardNet() - self.Model_list=nn.ModuleList([MultiHeadAttention() for _ in range(4)]) - def forward(self, enc_inputs,enc2,enc_self_attn_mask,edge_index): # enc_inputs: [batch_size, src_len, d_model] - # 输入3个enc_inputs分别与W_q、W_k、W_v相乘得到Q、K、V - enc_outputs=self.conv(enc_inputs,edge_index) - enc_outputs=self.enc_feed_forward2(enc_outputs) - enc_outputs=self.conv1(enc_outputs,edge_index) - enc_outputs=self.enc_feed_forward2(enc_outputs) - enc_outputs=self.conv2(enc_outputs,edge_index) - enc_outputs=self.enc_feed_forward2(enc_outputs) - - attn=0 - for i in self.Model_list: - enc2,attn=i(enc2,enc2,enc2,enc_self_attn_mask) - enc2 = self.enc_feed_forward1(enc2) - return enc_outputs,enc2, attn -class Encoder(nn.Module): - def __init__(self): - super(Encoder, self).__init__() - self.embedding = nn.Embedding(config.vocab_size, config.embedding_dim) - self.embedding1 = nn.Embedding(5, 1024) - self.attention = MultiHeadAttention() - self.pos_ffn = PoswiseFeedForwardNet() - self.layers = nn.ModuleList([EncoderLayer() for _ in range(config.Encoder_n_layers)]) - self.dropout = nn.Dropout(config.dropout) - - def forward(self, enc_inputs,edge_index,enc): - enc=self.embedding1(enc) - enc_outputs=self.embedding(enc_inputs) - atoms_enc_self_attns1 = [] - enc_self_attn_mask = get_attn_pad_mask(enc.squeeze(0), - enc.squeeze(0)) # enc_self_attn_mask: [batch_size, src_len, src_len] - enc_outputs=enc_outputs.squeeze(0) - edge_index=edge_index.squeeze(0) - enc_outputs=enc_outputs.unsqueeze(0) - - for layer in self.layers: - enc_outputs,enc, attn = layer(enc_outputs,enc,enc_self_attn_mask,edge_index) # enc_outputs : [batch_size, src_len, d_model], - atoms_enc_self_attns1.append(attn) - - return enc_outputs,enc -