import torch from torch import nn import config class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, scale_factor=16, dropout=config.dropout): super().__init__() self.scale_factor = scale_factor # dropout用于防止过拟合,在前向传播的过程中,让某个神经元的激活值以一定的概率停止工作 self.dropout = nn.Dropout(dropout) def forward(self, q, k, v, mask=None): # batch_size: 批量大小 # len_q,len_k,len_v: 序列长度 在这里他们都相等 # n_head: 多头注意力,论文中默认为8 # d_k,d_v: k v 的dim(维度) 默认都是64 # 此时q的shape为(batch_size, n_head, len_q, d_k) (batch_size, 8, len_q, 64) # 此时k的shape为(batch_size, n_head, len_k, d_k) (batch_size, 8, len_k, 64) # 此时v的shape为(batch_size, n_head, len_k, d_v) (batch_size, 8, len_k, 64) # q先除以self.scale_factor,再乘以k的转置(交换最后两个维度(这样才可以进行矩阵相乘))。 # attn的shape为(batch_size, n_head, len_q, len_k) attn = torch.matmul(q / self.scale_factor, k.transpose(2, 3)) if mask is not None: """ 用-1e9代替0 -1e9是一个很大的负数 经过softmax之后接近0 # 其一:去除掉各种padding在训练过程中的影响 # 其二,将输入进行遮盖,避免decoder看到后面要预测的东西。(只用在decoder中) """ attn = attn.masked_fill(mask.to('cuda:0') == 0, -1e9) # 先在attn的最后一个维度做softmax 再dropout 得到注意力分数 attn = self.dropout(torch.softmax(attn, dim=-1)) # 最后attn与v矩阵相乘 # output的shape为(batch_size, 8, len_q, 64) output = torch.matmul(attn, v) # 返回 output和注意力分数 return output, attn class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head=config.n_head, d_model=config.input_dim, d_k=config.input_dim//2, d_v=config.hidden_dim//2, dropout=config.dropout): # 论文中这里的n_head, d_model, d_k, d_v分别默认为8, 512, 64, 64 ''' # q k v先经过不同的线性层,再用ScaledDotProductAttention,最后再经过一个线性层 ''' super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=config.bias) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=config.bias) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=config.bias) self.fc = nn.Linear(n_head * d_v, d_model, bias=config.bias) self.attention = ScaledDotProductAttention(scale_factor=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) # 默认对最后一个维度初始化 def forward(self, q, k, v, mask=None): # q, k, v初次输入为含位置信息的嵌入矩阵X,由于要堆叠N次,后面的输入则是上个多头的输出 # q, k, v:batch_size * seq_num * d_model d_k, d_v, n_head = self.d_k, self.d_v, self.n_head # len_q, len_k, len_v 为输入的序列长度 # batch_size为batch_size batch_size, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) # 用作残差连接 residual = q # Pass through the pre-attention projection: b x lq x (n*dv) # Separate different heads: b x lq x n x dv # q k v 分别经过一个线性层再改变维度 # 由(batch_size, len_q, n_head*d_k) => (batch_size, len_q, n_head, d_k) # (batch_size, len_q, 8*64) => (batch_size, len_q, 8, 64) q = self.layer_norm(q) k = self.layer_norm(k) v = self.layer_norm(v) # 与q,k,v相关矩阵相乘,得到相应的q,k,v向量,d_model=n_head * d_k q = self.w_qs(q).view(batch_size, len_q, n_head, d_k) k = self.w_ks(k).view(batch_size, len_k, n_head, d_k) v = self.w_vs(v).view(batch_size, len_v, n_head, d_v) # Transpose for attention dot product: b x n x lq x dv # 交换维度做attention # 由(batch_size, len_q, n_head, d_k) => (batch_size, n_head, len_q, d_k) # (batch_size, len_q, 8, 64) => (batch_size, 8, len_q, 64) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) # 输出的q为Softmax(QK/d + (1-S)σ)V, attn 为QK/D q, attn = self.attention(q, k, v, mask=None) # Transpose to move the head dimension back: b x lq x n x dv # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv) # (batch_size, 8, len_k, 64) => (batch_size, len_k, 8, 64) => (batch_size, len_k, 512) q = q.transpose(1, 2).contiguous().view(batch_size, len_q, -1) # 经过fc和dropout q = self.dropout(self.fc(q)) # 残差连接 论文中的Add & Norm中的Add q += residual # 论文中的Add & Norm中的Norm q = self.layer_norm(q) # q的shape为(batch_size, len_q, 512) # attn的shape为(batch_size, n_head, len_q, len_k) return q, attn