import torch import torch.nn.functional as F import config import json import numpy as np from date_build import Chem_Dataset model=torch.load('models\model3.1(150).pt') def padding( chemic, lens=config.seq_len): while len(chemic) < lens: chemic.append(0) return chemic def target_padding( chemical, lens=config.seq_len): chemical.append(1) while len(chemical)