ADD file via upload

main
p9kh64cfp 8 months ago
parent 61ff469219
commit 16f181daea

@ -0,0 +1,73 @@
import torch.nn as nn
import torch
import torch
import torch.nn as nn
import torch.nn.functional as F
class InceptionModule(nn.Module):
def __init__(self, in_channels, out_1x1, reduce_3x3, out_3x3, reduce_5x5, out_5x5, out_pool_proj):
super(InceptionModule, self).__init__()
#分支11*1卷积层
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels, out_1x1, kernel_size=1),
nn.ReLU(True),
)
#分支21*1卷积层 3*3卷积层
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels, reduce_3x3, kernel_size=1),
nn.ReLU(True),
nn.Conv2d(reduce_3x3, out_3x3, kernel_size=3, padding=1),
nn.ReLU(True),
)
#分支31*1卷积层 5*5卷积层
self.branch3 = nn.Sequential(
nn.Conv2d(in_channels, reduce_5x5, kernel_size=1),
nn.ReLU(True),
nn.Conv2d(reduce_5x5, out_5x5, kernel_size=5, padding=2),
nn.ReLU(True),
)
#分支4最大池化层 1*1卷积层
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels, out_pool_proj, kernel_size=1),
nn.ReLU(True),
)
#进行concatenate连接将四个分支合并一起作为输出
def forward(self, x):
outputs = [self.branch1(x), self.branch2(x), self.branch3(x), self.branch4(x)]
return torch.cat(outputs, 1)
class ImprovedAlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(ImprovedAlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),#卷积层1
nn.ReLU(inplace=True),#激活函数
nn.MaxPool2d(kernel_size=3, stride=2),#最大池化层1
InceptionModule(64, 32, 48, 64, 8, 16, 16), # 替代原始的第一个卷积层
nn.MaxPool2d(kernel_size=3, stride=2),#最大池化层2
InceptionModule(128, 64, 96, 128, 16, 32, 32), # 替代原始的第二个卷积层
nn.MaxPool2d(kernel_size=3, stride=2),#最大池化层3
)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),#Dropout层表示对输入数据进行随机丢弃操作丢弃概率为0.5,用于防止过拟合
nn.Linear(256 * 6 * 6, 2048),#全连接层,将输入特征的维度由(256,6,6)转换为2048用于进行线性变换操作
nn.ReLU(inplace=True),#激活函数
nn.Dropout(p=0.5),#Dropout层作用同上
nn.Linear(2048, 2048),#全连接层
nn.ReLU(inplace=True),#激活函数
nn.Linear(2048, num_classes),#全连接层
)
def forward(self, x):
x = self.features(x)#进行卷积操作
x = torch.flatten(x, start_dim=1)#展平
x = self.classifier(x)#输出
return x
Loading…
Cancel
Save