From 9932aec78c3708e7229d1fd7b655a5744f7453f8 Mon Sep 17 00:00:00 2001 From: p9kh64cfp <1047063963@qq.com> Date: Tue, 31 Dec 2024 11:21:55 +0800 Subject: [PATCH] ADD file via upload --- Se_AlexNet.py | 62 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 62 insertions(+) create mode 100644 Se_AlexNet.py diff --git a/Se_AlexNet.py b/Se_AlexNet.py new file mode 100644 index 0000000..99f1f61 --- /dev/null +++ b/Se_AlexNet.py @@ -0,0 +1,62 @@ +import torch.nn as nn +import torch +import torch +import torch.nn as nn +import torch.nn.functional as F + +class SE_block(nn.Module): + def __init__(self, inchannel, ratio = 16):#压缩比默认16 + super(SE_block, self).__init__() + #全局平均池化 + self.gap = nn.AdaptiveAvgPool2d((1,1)) + #两个全连接层 + self.fc = nn.Sequential( + nn.Linear(inchannel, inchannel // ratio, bias = False), + nn.ReLU(), + nn.Linear(inchannel // ratio, inchannel, bias=False), + nn.Sigmoid() + ) + + def forward(self, x): + b ,c ,h ,w =x.size()#读取数据图片数量和通道数 + #print(b, c, h, w) (32, 128, 27, 27) + y = self.gap(x).view(b ,c)#经过池化后输出b*c的矩阵 + y =self.fc(y).view(b ,c, 1, 1)#经过全连接层输出(b,c,1,1)矩阵 + + return x * y.expand_as(x)#将得到的权重*原来的特征图x + +class ImprovedAlexNet(nn.Module): + def __init__(self, num_classes=1000): + super(ImprovedAlexNet, self).__init__() + self.features = nn.Sequential( # 卷积层提取图像特征 + nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[48, 55, 55] + nn.ReLU(inplace=True), # 直接修改覆盖原值,节省运算内存 + nn.MaxPool2d(kernel_size=3, stride=2), # output[48, 27, 27] + SE_block(48), + nn.Conv2d(48, 128, kernel_size=5, padding=2), # output[128, 27, 27] + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13] + nn.Conv2d(128, 192, kernel_size=3, padding=1), # output[192, 13, 13] + nn.ReLU(inplace=True), + nn.Conv2d(192, 192, kernel_size=3, padding=1), # output[192, 13, 13] + nn.ReLU(inplace=True), + nn.Conv2d(192, 128, kernel_size=3, padding=1), # output[128, 13, 13] + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6] + ) + self.classifier = nn.Sequential( # 全连接层对图像分类 + nn.Dropout(p=0.5), # Dropout 随机失活神经元,默认比例为0.5 + nn.Linear(128 * 6 * 6, 2048), + nn.ReLU(inplace=True), + nn.Dropout(p=0.5), + nn.Linear(2048, 2048), + nn.ReLU(inplace=True), + nn.Linear(2048, num_classes), + ) + + def forward(self, x): + x = self.features(x)#进行卷积操作 + x = torch.flatten(x, start_dim=1)#展平 + x = self.classifier(x)#输出 + return x +