From ddff6e193fddf3602887448ed6b406c1eabe534b Mon Sep 17 00:00:00 2001 From: p9kh64cfp <1047063963@qq.com> Date: Tue, 31 Dec 2024 11:21:00 +0800 Subject: [PATCH] ADD file via upload --- model_alexnet.py | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 model_alexnet.py diff --git a/model_alexnet.py b/model_alexnet.py new file mode 100644 index 0000000..7f1ec69 --- /dev/null +++ b/model_alexnet.py @@ -0,0 +1,40 @@ +import torch.nn as nn +import torch +import torch +import torch.nn as nn +import torch.nn.functional as F + +class ImprovedAlexNet(nn.Module): + def __init__(self, num_classes=1000): + super(ImprovedAlexNet, self).__init__() + self.features = nn.Sequential( # 卷积层提取图像特征 + nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[48, 55, 55] + nn.ReLU(inplace=True), # 直接修改覆盖原值,节省运算内存 + nn.MaxPool2d(kernel_size=3, stride=2), # output[48, 27, 27] + nn.Conv2d(48, 128, kernel_size=5, padding=2), # output[128, 27, 27] + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13] + nn.Conv2d(128, 192, kernel_size=3, padding=1), # output[192, 13, 13] + nn.ReLU(inplace=True), + nn.Conv2d(192, 192, kernel_size=3, padding=1), # output[192, 13, 13] + nn.ReLU(inplace=True), + nn.Conv2d(192, 128, kernel_size=3, padding=1), # output[128, 13, 13] + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6] + ) + self.classifier = nn.Sequential( # 全连接层对图像分类 + nn.Dropout(p=0.5), # Dropout 随机失活神经元,默认比例为0.5 + nn.Linear(128 * 6 * 6, 2048), + nn.ReLU(inplace=True), + nn.Dropout(p=0.5), + nn.Linear(2048, 2048), + nn.ReLU(inplace=True), + nn.Linear(2048, num_classes), + ) + + def forward(self, x): + x = self.features(x)#进行卷积操作 + x = torch.flatten(x, start_dim=1)#展平 + x = self.classifier(x)#输出 + return x +