diff --git a/arguments.py b/arguments.py new file mode 100644 index 0000000..dda71ab --- /dev/null +++ b/arguments.py @@ -0,0 +1,425 @@ +# coding=utf-8 +# Copyright 2020 The OpenBMB team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + + +def add_model_config_args(parser: argparse.ArgumentParser): + """Model arguments""" + + group = parser.add_argument_group("model", "model configuration") + group.add_argument("--model-config", type=str, help="model configuration file") + group.add_argument("--vocab", type=str, default=None, help="model vocabulary file") + group.add_argument("--eps", type=float, default=1e-5, help="eps in layernorm") + # group.add_argument("--qk_norm", action="store_true", default=False, help="qk layernorm") + return parser + + +def add_training_args(parser: argparse.ArgumentParser): + """Training arguments.""" + + group = parser.add_argument_group("train", "training configurations") + group.add_argument("--platform-config", type=str, default="platform_config.json", help="Path to platform config") + group.add_argument("--dataset", type=str, default="dataset.json", help="Path to dataset") + group.add_argument("--val-dataset", type=str, default="dataset.json", help="Path to val dataset") + group.add_argument( + "--load", + type=str, + default=None, + help="Path to a directory containing a model checkpoint.", + ) + + group.add_argument( + "--load-grad", + action="store_true", + default=False, + help="Load the gradient states", + ) + + group.add_argument( + "--grad-ckpt-num", + type=int, + default=0, + help="grad file num (only work when --load-grad from files less than world-size )", + ) + + group.add_argument( + "--load-start-step", + action="store_true", + default=False, + help="Load the step state from checkpoints", + ) + + group.add_argument( + "--save", + type=str, + default=None, + help="Output directory to save checkpoints to.", + ) + group.add_argument( + "--save-name", + type=str, + default=None, + help="Output filename to save checkpoints to.", + ) + group.add_argument( + "--save-model", + type=str, + default=None, + help="Output directory to save model to.", + ) + + group.add_argument( + "--tensorboard", + type=str, + default=None, + help="tensorboard directory", + ) + + group.add_argument("--inspect-iters", type=int, default=1000, help="number of inspecting") + group.add_argument("--batch-size", type=int, default=32, help="Data Loader batch size") + group.add_argument("--num-micro-batches", type=int, default=1) + group.add_argument("--clip-grad", type=float, default=1.0, help="gradient clipping") + group.add_argument("--grad-accum", type=int, default=1, help="gradient accum steps") + group.add_argument( + "--train-iters", + type=int, + default=1000000, + help="total number of iterations to train over all training runs", + ) + group.add_argument("--max-length", type=int, default=512, help="max length of input") + group.add_argument("--min-length", type=int, default=None, help="only for speed test") + + group.add_argument("--seed", type=int, default=42, help="random seed for reproducibility") + + # Learning rate. + group.add_argument("--lr", type=float, default=1.0e-4, help="initial learning rate") + group.add_argument("--lr_scheduler", type=str, default="cosine", help=" learning rate scheduler") + + group.add_argument("--weight-decay", type=float, default=1.0e-2, help="weight decay rate") + group.add_argument("--loss-scale", type=float, default=65536, help="loss scale") + group.add_argument("--max-loss-scale", type=float, default=float("inf"), help="loss scale") + group.add_argument("--min-loss-scale", type=float, default=1, help="loss scale") + group.add_argument("--loss-scale-steps", type=float, default=1024, help="loss scale") + + group.add_argument( + "--warmup-iters", + type=float, + default=0.01, + help="percentage of data to warmup on (.01 = 1% of all " "training iters). Default 0.01", + ) + group.add_argument( + "--drop-iters", + type=float, + default=0.01, + help="percentage of data to warmup on (.01 = 1% of all " "training iters). Default 0.01", + ) + + group.add_argument("--lr-decay-iters", type=int, default=None, help="lr decay steps") + group.add_argument("--start-step", type=int, default=0, help="step to start or continue training") + group.add_argument("--concat-data", action="store_true", help="whether we concatenate the dialogues") + group.add_argument("--offload", action="store_true", help="whether we use offload_adam") + group.add_argument("--new-bmt", action="store_true", help="new bmt without ckpt") + group.add_argument("--flash", default="none", choices=["none", "1d", "triton", "cuda"]) + group.add_argument("--use-jfs-data", action="store_true", help="whether we use juicefs dataset") + group.add_argument("--tp-size", default=1, type=int) + group.add_argument("--pp-size", default=1, type=int) + group.add_argument("--bf16", action="store_true", help="whether we use bf16") + group.add_argument("--dataloader_num_threads", default=3, type=int, help="Only useful in indexed dataest.") + group.add_argument("--dataloader_prefetch", default=200, type=int, help="Only useful in indexed dataest.") + group.add_argument("--dataloader_num_workers", default=4, type=int, help="Only useful in indexed dataest.") + group.add_argument("--dataloader_prefetch_factor", default=50, type=int, help="Only useful in indexed dataest.") + group.add_argument( + "--dataloader", + default="indexed", + type=str, + help="dataloader type, 'indexed' for indexed dataset, 'normal' for normal dataset", + ) + group.add_argument("--stop_when_end", default=0, type=int, help="Whether to stop training when we reach end_iter") + group.add_argument( + "--data_len_threshold", + default=512, + type=int, + help="If the average length of a sequence is less than this int, mean the sample is biased. ", + ) + group.add_argument( + "--only_run_dataloader", default=0, type=int, help="Whether to only run dataloader to check data. " + ) + group.add_argument( + "--only_load_model", default=0, type=int, help="Whether to only load a model ckpt, without anything else." + ) + group.add_argument( + "--load_dataloader_ckpt", default=1, type=int, help="Whether to only load a model ckpt, without anything else." + ) + + group.add_argument( + "--resume_no_optimze", + default=0, + type=int, + help="The number of steps that does not add optimization after resume", + ) + group.add_argument( + "--parallel_load_datastate", + default=256, + type=int, + help="The number of parallel workers to load dataset state", + ) + group.add_argument( + "--async_save", + action="store_true", + help="whether to save artifacts asynchronously", + ) + group.add_argument( + "--drop_begin", + default=-1, + type=int, + help="The number of steps that starts to drop lr" + ) + group.add_argument( + "--drop_rate", + default=0.5, + type=float, + help="The number rate" + ) + group.add_argument( + "--use_checkpoint", + default=1, + type=int, + help="Whether to use checkpointing." + ) + + return parser + + +def add_pretrain_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("pretrain", "pretrain configurations") + group.add_argument( + "--save-iters", + type=int, + default=1000, + help="number of iterations between saves", + ) + group.add_argument( + "--log-dir", + type=str, + default=None, + help="log directory", + ) + group.add_argument( + "--worker-name", + type=str, + default=None, + help="worker name", + ) + return parser + + +def add_tokenizer_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("tokenizer", "tokenizer configurations") + group.add_argument( + "--tokenizer_path", + type=str, + default="", + help="tokenizer_path", + ) + return parser + + +def add_finetune_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("finetune", "finetune configurations") + group.add_argument("--epoch", type=int, default=1, help="number of training epochs") + group.add_argument("--task-name", type=str, default="task", help="name of training task") + group.add_argument("--save-epochs", type=int, default=1, help="number of training epochs between saves") + group.add_argument("--save-steps", type=int, default=0, help="number of training steps between saves") + group.add_argument( + "--drop-last", + action="store_true", + default=False, + help="drop data from each epoch that cannot be formed into a complete batch at the end", + ) + group.add_argument("--delta-tuning", action="store_true", default=False) + group.add_argument("--each-epoch-save", default=False) + group.add_argument("--train-task-id", type=int, default=-1) + return parser + + +def add_rhlf_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("rhlf", "rhlf configurations") + + group.add_argument( + "--load-reward", + type=str, + default=None, + help="Path to reward model checkpoint.", + ) + group.add_argument("--actor-lr", type=float, default=1.0e-5, help="actor learning rate") + group.add_argument("--critic-lr", type=float, default=1.0e-6, help="critic learning rate") + group.add_argument("--actor-loss-scale", type=float, default=65536, help="actor loss scale") + group.add_argument("--critic-loss-scale", type=float, default=65536, help="critic loss scale") + group.add_argument("--avg-reward-bias", type=float, default=0, help="reward bias") + group.add_argument("--actor-delay-step", type=int, default=0, help="actor delay step") + group.add_argument("--entropy-coef", type=float, default=-1.0, help="coef of policy entropy") + ## + return parser + + +def add_simple_rhlf_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("simple_rhlf", "simple rhlf configurations") + group.add_argument("--epoch", type=int, default=1, help="number of training epochs") + group.add_argument("--sample-batch-size", type=int, default=32, help="Data Loader sample batch size") + group.add_argument("--load-reward", type=str, default=None, help="Path to reward model checkpoint") + group.add_argument("--avg-reward-bias", type=float, default=0, help="reward bias") + group.add_argument("--sample-min-length", type=int, default=20, help="sample-min-length") + group.add_argument("--sample-max-inp-length", type=int, default=1024, help="sample-max-inp-length") + group.add_argument("--sample-max-length", type=int, default=64, help="sample-max-length") + group.add_argument("--sample-repetition-penalty", type=float, default=1.05, help="sample-repetition-penalty") + group.add_argument("--sample-temperature", type=float, default=1.0, help="sample-temperature") + group.add_argument("--encode-max-length", type=int, default=1024, help="encode-max-length") + group.add_argument("--generate-max-length", type=int, default=64, help="generate-max-length") + group.add_argument("--value-loss-weight", type=float, default=0.1, help="value-loss-weight") + group.add_argument("--ptx-loss-weight", type=float, default=0.001, help="ptx-loss-weight") + group.add_argument("--save-epochs", type=int, default=1, help="number of training epochs between saves") + ## + return parser + + +def add_feedback_learning_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("rrhf", "rrhf configurations") + group.add_argument("--length-penalty", type=float, default=1.0, help="length_penalty") + group.add_argument("--feedback-weight", type=float, default=1.0, help="feedback_weight") + group.add_argument("--sample-num", type=int, default=6, help="sample_num") + group.add_argument("--dpo-beta", type=float, default=1.0, help="dpo_beta") + group.add_argument("--stable-alignment-margin", type=float, default=1.0, help="stable_alignment_margin") + group.add_argument("--feedback-learning-type", type=str, default="RRHF", help="feedback_learning_type") + group.add_argument("--save-iters", type=int, default=1000, help="number of iterations between saves") + ## + return parser + + +def add_model_change_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("model_change", "model change during pretraining") + group.add_argument("--strict_state_dict", type=int, default=1, help="strict_state_dict") + ## + return parser + + +def add_log_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("log", "log configurations") + group.add_argument("--tensorboard_all_tasks", type=int, default=0, help="log") + return parser + + +def add_error_handle_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("error_handle", "error_handle configurations") + group.add_argument( + "--ignore_cuda_oom", type=int, default=1, help="continue training by ingore the batch that causes oom" + ) + return parser + + +def add_runtime_eval_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("runtime eval args", "runtime evaluation by submitting a job") + group.add_argument( + "--runtime_eval", + action="store_true", + help="whether to use runtime_eval. Only if this is set to True, the following variables will be useful", + ) + group.add_argument("--eval_jeeves_auth", type=str, default="", help="auth, press f12 on jeeves platform to get") + group.add_argument("--eval_project_id", type=str, default=None, help="project id") + group.add_argument("--eval_run_cmd", type=str, default="", help="cmd for eval") + group.add_argument( + "--eval_git_path", + type=str, + default="git@git.in.zhihu.com:luca/llm-bench.git", + help="git path of evaluation code", + ) + group.add_argument("--eval_git_branch", type=str, default="master", help="git branch of evaluation code") + group.add_argument("--eval_node_num", type=int, default=1, help="using 1 node to evaluate") + group.add_argument("--eval_gpu_num", type=int, default=1, help="using 1 gpu per node to evaluate") + group.add_argument("--eval_tasks_config", type=str, default="", help="evaluate tasks' config") + group.add_argument("--eval_model_backend", default="torch", type=str, help="model_backend") + + group.add_argument( + "--eval_at_start", action="store_true", help="whether to eval at the first epoch, default to false" + ) + + return parser + + +def add_reward_args(parser: argparse.ArgumentParser): + group = parser.add_argument_group("reward", "reward configurations") + group.add_argument("--load-all", type=str, default=None, help="Path to a directory containing a model checkpoint.") + ## + return parser + + +def add_long_context_extend_args(parser: argparse.ArgumentParser): + """long context extending arguments.""" + group = parser.add_argument_group("long_context_extend", "long context extend configurations") + group.add_argument("--pose-prob", default=0.0, type=float, help="Sample-level PoSE probability") + group.add_argument( + "--pose-scaling-factor", + default=1.0, + type=float, + help="PoSE scaling factor, simulate input length = max_length * pose_scaling_factor", + ) + group.add_argument( + "--rope-scaling-type", + default="", + type=str, + choices=["Linear", "NTK-aware", "Dynamic NTK", "NTK-by-parts", "YaRN", ""], + help="Context scaling type", + ) + group.add_argument("--rope-scaling-factor", default=1, type=int, help="Context scaling factor") + group.add_argument( + "--orig-max-length", default=8192, type=int, help="Original context length before context extending" + ) + return parser + + +def get_args( + pretrain: bool = False, + finetune: bool = False, + rhlf: bool = False, + simple_rlhf: bool = False, + feedback_learning: bool = False, + reward: bool = False, +): + parser = argparse.ArgumentParser() + parser = add_model_config_args(parser) # config file need to be exported with model/ckpt + parser = add_training_args(parser) + if pretrain: + parser = add_pretrain_args(parser) + parser = add_runtime_eval_args(parser) + parser = add_tokenizer_args(parser) + parser = add_log_args(parser) + parser = add_error_handle_args(parser) + parser = add_model_change_args(parser) + + if finetune: + parser = add_finetune_args(parser) + if rhlf: + parser = add_rhlf_args(parser) + if simple_rlhf: + parser = add_simple_rhlf_args(parser) + if feedback_learning: + parser = add_feedback_learning_args(parser) + if reward: + parser = add_reward_args(parser) + parser = add_long_context_extend_args(parser) + + args = parser.parse_args() + + return args