|
|
|
@ -0,0 +1,104 @@
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
#include <time.h>
|
|
|
|
|
#include <arm_neon.h>
|
|
|
|
|
|
|
|
|
|
void matmul(float** A, float** B, float** C, int n) {
|
|
|
|
|
int i,k,j;
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
|
for (j = 0; j < n; j++) {
|
|
|
|
|
C[i][j] = 0;
|
|
|
|
|
for (k = 0; k < n; k++) {
|
|
|
|
|
C[i][j] += A[i][k] * B[k][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NEON优化的矩阵乘法函数
|
|
|
|
|
void matmul_optimized(float** A, float** B, float** C, int n) {
|
|
|
|
|
int i,j,k;
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
|
for (j = 0; j < n; j++) {
|
|
|
|
|
// 初始化结果矩阵C的当前元素为0
|
|
|
|
|
C[i][j] = 0;
|
|
|
|
|
|
|
|
|
|
// 用于累加的向量寄存器,初始化为0
|
|
|
|
|
float32x4_t vecC = vdupq_n_f32(0);
|
|
|
|
|
|
|
|
|
|
for (k = 0; k < n; k += 4) {
|
|
|
|
|
// 加载矩阵A的一行中的4个连续元素到向量寄存器
|
|
|
|
|
float32x4_t vecA = vld1q_f32(&A[i][k]);
|
|
|
|
|
// 加载矩阵B的一列中的4个连续元素到向量寄存器(注意这里要转置的逻辑,实际是按列取元素)
|
|
|
|
|
float32x4_t vecB = vld1q_f32(&B[k][j]);
|
|
|
|
|
|
|
|
|
|
// 对应元素相乘并累加到vecC
|
|
|
|
|
vecC = vmlaq_f32(vecC, vecA, vecB);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 将累加结果从向量寄存器提取并累加到C[i][j]
|
|
|
|
|
C[i][j] += vgetq_lane_f32(vecC, 0) + vgetq_lane_f32(vecC, 1) + vgetq_lane_f32(vecC, 2) + vgetq_lane_f32(vecC, 3);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
// 定义矩阵大小
|
|
|
|
|
int n = 1024;
|
|
|
|
|
|
|
|
|
|
// 动态分配两个输入矩阵A和B,以及结果矩阵C的内存
|
|
|
|
|
float** A = (float**)malloc(n * sizeof(float*));
|
|
|
|
|
float** B = (float**)malloc(n * sizeof(float*));
|
|
|
|
|
float** C = (float**)malloc(n * sizeof(float*));
|
|
|
|
|
|
|
|
|
|
int i,j;
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
|
A[i] = (float*)malloc(n * sizeof(float));
|
|
|
|
|
B[i] = (float*)malloc(n * sizeof(float));
|
|
|
|
|
C[i] = (float*)malloc(n * sizeof(float));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 初始化矩阵数据,将A和B矩阵的每个元素随机初始化
|
|
|
|
|
srand((unsigned int)time(NULL));
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
|
for (j = 0; j < n; j++) {
|
|
|
|
|
A[i][j] = (float)(rand() % 100);
|
|
|
|
|
B[i][j] = (float)(rand() % 100);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
clock_t start, end;
|
|
|
|
|
|
|
|
|
|
// 测试普通矩阵乘法函数的运行时间
|
|
|
|
|
start = clock();
|
|
|
|
|
matmul(A, B, C, n);
|
|
|
|
|
end = clock();
|
|
|
|
|
double time_taken_normal = ((double)(end - start)) / CLOCKS_PER_SEC;
|
|
|
|
|
printf("normal time: %lf s\n", time_taken_normal);
|
|
|
|
|
|
|
|
|
|
// 重新初始化结果矩阵C为0,以便再次使用
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
|
for (j = 0; j < n; j++) {
|
|
|
|
|
C[i][j] = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 测试NEON优化矩阵乘法函数的运行时间
|
|
|
|
|
start = clock();
|
|
|
|
|
matmul_optimized(A, B, C, n);
|
|
|
|
|
end = clock();
|
|
|
|
|
double time_taken_optimized = ((double)(end - start)) / CLOCKS_PER_SEC;
|
|
|
|
|
printf("NEON time: %lf s\n", time_taken_optimized);
|
|
|
|
|
|
|
|
|
|
// 释放动态分配的内存空间
|
|
|
|
|
for ( i = 0; i < n; i++) {
|
|
|
|
|
free(A[i]);
|
|
|
|
|
free(B[i]);
|
|
|
|
|
free(C[i]);
|
|
|
|
|
}
|
|
|
|
|
free(A);
|
|
|
|
|
free(B);
|
|
|
|
|
free(C);
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|