# -*- coding: utf-8 -*- import cv2 import numpy as np from numpy.linalg import norm SZ = 20 # 训练图片长宽 MAX_WIDTH = 1000 # 原始图片最大宽度 Min_Area = 2000 # 车牌区域允许最大面积 PROVINCE_START = 1000 # 来自opencv的sample,用于svm训练 def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11'] / m['mu02'] M = np.float32([[1, skew, -0.5 * SZ * skew], [0, 1, 0]]) img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) return img # 来自opencv的sample,用于svm训练 def preprocess_hog(digits): samples = [] for img in digits: gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) mag, ang = cv2.cartToPolar(gx, gy) bin_n = 16 bin = np.int32(bin_n * ang / (2 * np.pi)) bin_cells = bin[:10, :10], bin[10:, :10], bin[:10, 10:], bin[10:, 10:] mag_cells = mag[:10, :10], mag[10:, :10], mag[:10, 10:], mag[10:, 10:] hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] hist = np.hstack(hists) # transform to Hellinger kernel eps = 1e-7 hist /= hist.sum() + eps hist = np.sqrt(hist) hist /= norm(hist) + eps samples.append(hist) return np.float32(samples) provinces = [ "zh_cuan", "川", "zh_e", "鄂", "zh_gan", "赣", "zh_gan1", "甘", "zh_gui", "贵", "zh_gui1", "桂", "zh_hei", "黑", "zh_hu", "沪", "zh_ji", "冀", "zh_jin", "津", "zh_jing", "京", "zh_jl", "吉", "zh_liao", "辽", "zh_lu", "鲁", "zh_meng", "蒙", "zh_min", "闽", "zh_ning", "宁", "zh_qing", "青", "zh_qiong", "琼", "zh_shan", "陕", "zh_su", "苏", "zh_sx", "晋", "zh_wan", "皖", "zh_xiang", "湘", "zh_xin", "新", "zh_yu", "豫", "zh_yu1", "渝", "zh_yue", "粤", "zh_yun", "云", "zh_zang", "藏", "zh_zhe", "浙" ]