You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

241 lines
8.3 KiB

import random
import math
import numpy as np
import matplotlib.pyplot as plt
import time
class TS(object):
def __init__(self, num_city, data,taboo_size=5, iteration=500):
self.taboo_size = taboo_size
self.iteration = iteration
self.num_city = num_city
self.location = data
self.taboo = []
self.dis_mat = self.compute_dis_mat(num_city, data)
self.path = self.greedy_init(self.dis_mat,100,num_city)
self.best_path = self.path
self.cur_path = self.path
self.best_length = self.compute_pathlen(self.path, self.dis_mat)
# 显示初始化后的路径
init_pathlen = 1. / self.compute_pathlen(self.path, self.dis_mat)
# 存储结果,画出收敛图
self.iter_x = [0]
self.iter_y = [1. / init_pathlen]
def greedy_init(self, dis_mat, num_total, num_city):
start_index = 0
result = []
for i in range(num_total):
rest = [x for x in range(0, num_city)]
if start_index >= num_city:
start_index = np.random.randint(0, num_city)
result.append(result[start_index].copy())
continue
current = start_index
rest.remove(current)
result_one = [current] # 找到一条最近邻路径
while len(rest) != 0:
tmp_min = math.inf
tmp_choose = -1
for x in rest:
if dis_mat[current][x] < tmp_min:
tmp_min = dis_mat[current][x]
tmp_choose = x
current = tmp_choose
result_one.append(tmp_choose)
rest.remove(tmp_choose)
result.append(result_one)
start_index += 1
pathlens = self.compute_paths(result)
sortindex = np.argsort(pathlens)
index = sortindex[0]
return result[index]
# return result[0]
# 初始化一条随机路径
def random_init(self, num_city):
tmp = [x for x in range(num_city)]
random.shuffle(tmp)
return tmp
# 计算不同城市之间的距离
def compute_dis_mat(self, num_city, location):
dis_mat = np.zeros((num_city, num_city))
for i in range(num_city):
for j in range(num_city):
if i == j:
dis_mat[i][j] = np.inf
continue
a = location[i]
b = location[j]
tmp = np.sqrt(sum([(x[0] - x[1]) ** 2 for x in zip(a, b)]))
dis_mat[i][j] = tmp
return dis_mat
# 计算路径长度
def compute_pathlen(self, path, dis_mat):
a = path[0]
b = path[-1]
result = dis_mat[a][b]
for i in range(len(path) - 1):
a = path[i]
b = path[i + 1]
result += dis_mat[a][b]
return result
# 计算一个群体的长度
def compute_paths(self, paths):
result = []
for one in paths:
length = self.compute_pathlen(one, self.dis_mat)
result.append(length)
return result
# 产生随机解
def ts_search(self, x):
moves = []
new_paths = []
while len(new_paths)<400:
i = np.random.randint(len(x))
j = np.random.randint(len(x))
tmp = x.copy()
tmp[i:j] = tmp[i:j][::-1]
new_paths.append(tmp)
moves.append([i, j])
return new_paths, moves
# 禁忌搜索
def ts(self):
start_time = time.time()
for cnt in range(self.iteration):
new_paths, moves = self.ts_search(self.cur_path)
new_lengths = self.compute_paths(new_paths)
sort_index = np.argsort(new_lengths)
min_l = new_lengths[sort_index[0]]
min_path = new_paths[sort_index[0]]
min_move = moves[sort_index[0]]
# 更新当前的最优路径
if min_l < self.best_length:
self.best_length = min_l
self.best_path = min_path
self.cur_path = min_path
# 更新禁忌表
if min_move in self.taboo:
self.taboo.remove(min_move)
self.taboo.append(min_move)
else:
# 找到不在禁忌表中的操作
while min_move in self.taboo:
sort_index = sort_index[1:]
min_path = new_paths[sort_index[0]]
min_move = moves[sort_index[0]]
self.cur_path = min_path
self.taboo.append(min_move)
# 禁忌表超长了
if len(self.taboo) > self.taboo_size:
self.taboo = self.taboo[1:]
self.iter_x.append(cnt)
self.iter_y.append(self.best_length)
#print(cnt, self.best_length)
print(self.best_length)
total_time = time.time() - start_time
return self.best_length, total_time
def run(self):
best_length, total_time = self.ts()
return self.location[self.best_path], best_length, total_time
def read_tsp(path):
lines = open(path, 'r').readlines()
assert 'NODE_COORD_SECTION\n' in lines
index = lines.index('NODE_COORD_SECTION\n')
data = lines[index + 1:-1]
tmp = []
for line in data:
line = line.strip().split(' ')
if line[0] == 'EOF':
continue
tmpline = []
for x in line:
if x == '':
continue
else:
tmpline.append(float(x))
if tmpline == []:
continue
tmp.append(tmpline)
data = tmp
return data
def parameter_sensitivity_test():
# 定义参数组合
taboo_sizes = [3, 5, 10]
iterations = [200, 500, 1000]
results = []
# 遍历所有参数组合
for taboo_size in taboo_sizes:
for iteration in iterations:
model = TS(num_city=data.shape[0], data=data.copy(),
taboo_size=taboo_size, iteration=iteration)
best_length, total_time = model.ts() # 调用ts()并获取结果
results.append({
"taboo_size": taboo_size,
"iteration": iteration,
"best_length": best_length,
"time": total_time
})
print(f"taboo_size={taboo_size}, iteration={iteration}, "
f"length={best_length:.2f}, time={total_time:.2f}s")
# 结果可视化(示例:热力图)
import pandas as pd
import seaborn as sns
df = pd.DataFrame(results)
pivot_length = df.pivot(index="taboo_size", columns="iteration", values="best_length")
pivot_time = df.pivot(index="taboo_size", columns="iteration", values="time")
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.heatmap(pivot_length, annot=True, fmt=".2f", cmap="YlGnBu")
plt.title("Path Length vs Parameters")
plt.subplot(1, 2, 2)
sns.heatmap(pivot_time, annot=True, fmt=".2f", cmap="YlGnBu")
plt.title("Time Cost vs Parameters")
plt.tight_layout()
plt.show()
if __name__ == "__main__":
data = read_tsp('data/st70.tsp')
data = np.array(data)
plt.suptitle('TS in st70.tsp')
data = data[:, 1:]
plt.subplot(2, 2, 1)
plt.title('raw data')
show_data = np.vstack([data, data[0]])
plt.plot(data[:, 0], data[:, 1])
model = TS(num_city=data.shape[0], data=data.copy())
Best_path, Best_length,execution_time = model.run()
print("时间:",execution_time)
Best_path = np.vstack([Best_path, Best_path[0]])
fig, axs = plt.subplots(2, 1, sharex=False, sharey=False)
axs[0].scatter(Best_path[:, 0], Best_path[:,1])
Best_path = np.vstack([Best_path, Best_path[0]])
axs[0].plot(Best_path[:, 0], Best_path[:, 1])
axs[0].set_title('规划结果')
iterations = model.iter_x
best_record = model.iter_y
axs[1].plot(iterations, best_record)
axs[1].set_title('收敛曲线')
#plt.show()
plt.show(block=False) # 添加此行,允许后续代码继续执行
#参数敏感性实验
parameter_sensitivity_test()