You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1859 lines
						
					
					
						
							56 KiB
						
					
					
				
			
		
		
	
	
							1859 lines
						
					
					
						
							56 KiB
						
					
					
				| /**
 | |
|  * Javascript implementation of basic RSA algorithms.
 | |
|  *
 | |
|  * @author Dave Longley
 | |
|  *
 | |
|  * Copyright (c) 2010-2014 Digital Bazaar, Inc.
 | |
|  *
 | |
|  * The only algorithm currently supported for PKI is RSA.
 | |
|  *
 | |
|  * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo
 | |
|  * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier
 | |
|  * and a subjectPublicKey of type bit string.
 | |
|  *
 | |
|  * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters
 | |
|  * for the algorithm, if any. In the case of RSA, there aren't any.
 | |
|  *
 | |
|  * SubjectPublicKeyInfo ::= SEQUENCE {
 | |
|  *   algorithm AlgorithmIdentifier,
 | |
|  *   subjectPublicKey BIT STRING
 | |
|  * }
 | |
|  *
 | |
|  * AlgorithmIdentifer ::= SEQUENCE {
 | |
|  *   algorithm OBJECT IDENTIFIER,
 | |
|  *   parameters ANY DEFINED BY algorithm OPTIONAL
 | |
|  * }
 | |
|  *
 | |
|  * For an RSA public key, the subjectPublicKey is:
 | |
|  *
 | |
|  * RSAPublicKey ::= SEQUENCE {
 | |
|  *   modulus            INTEGER,    -- n
 | |
|  *   publicExponent     INTEGER     -- e
 | |
|  * }
 | |
|  *
 | |
|  * PrivateKeyInfo ::= SEQUENCE {
 | |
|  *   version                   Version,
 | |
|  *   privateKeyAlgorithm       PrivateKeyAlgorithmIdentifier,
 | |
|  *   privateKey                PrivateKey,
 | |
|  *   attributes           [0]  IMPLICIT Attributes OPTIONAL
 | |
|  * }
 | |
|  *
 | |
|  * Version ::= INTEGER
 | |
|  * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
 | |
|  * PrivateKey ::= OCTET STRING
 | |
|  * Attributes ::= SET OF Attribute
 | |
|  *
 | |
|  * An RSA private key as the following structure:
 | |
|  *
 | |
|  * RSAPrivateKey ::= SEQUENCE {
 | |
|  *   version Version,
 | |
|  *   modulus INTEGER, -- n
 | |
|  *   publicExponent INTEGER, -- e
 | |
|  *   privateExponent INTEGER, -- d
 | |
|  *   prime1 INTEGER, -- p
 | |
|  *   prime2 INTEGER, -- q
 | |
|  *   exponent1 INTEGER, -- d mod (p-1)
 | |
|  *   exponent2 INTEGER, -- d mod (q-1)
 | |
|  *   coefficient INTEGER -- (inverse of q) mod p
 | |
|  * }
 | |
|  *
 | |
|  * Version ::= INTEGER
 | |
|  *
 | |
|  * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1
 | |
|  */
 | |
| var forge = require('./forge');
 | |
| require('./asn1');
 | |
| require('./jsbn');
 | |
| require('./oids');
 | |
| require('./pkcs1');
 | |
| require('./prime');
 | |
| require('./random');
 | |
| require('./util');
 | |
| 
 | |
| if(typeof BigInteger === 'undefined') {
 | |
|   var BigInteger = forge.jsbn.BigInteger;
 | |
| }
 | |
| 
 | |
| var _crypto = forge.util.isNodejs ? require('crypto') : null;
 | |
| 
 | |
| // shortcut for asn.1 API
 | |
| var asn1 = forge.asn1;
 | |
| 
 | |
| // shortcut for util API
 | |
| var util = forge.util;
 | |
| 
 | |
| /*
 | |
|  * RSA encryption and decryption, see RFC 2313.
 | |
|  */
 | |
| forge.pki = forge.pki || {};
 | |
| module.exports = forge.pki.rsa = forge.rsa = forge.rsa || {};
 | |
| var pki = forge.pki;
 | |
| 
 | |
| // for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
 | |
| var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
 | |
| 
 | |
| // validator for a PrivateKeyInfo structure
 | |
| var privateKeyValidator = {
 | |
|   // PrivateKeyInfo
 | |
|   name: 'PrivateKeyInfo',
 | |
|   tagClass: asn1.Class.UNIVERSAL,
 | |
|   type: asn1.Type.SEQUENCE,
 | |
|   constructed: true,
 | |
|   value: [{
 | |
|     // Version (INTEGER)
 | |
|     name: 'PrivateKeyInfo.version',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyVersion'
 | |
|   }, {
 | |
|     // privateKeyAlgorithm
 | |
|     name: 'PrivateKeyInfo.privateKeyAlgorithm',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.SEQUENCE,
 | |
|     constructed: true,
 | |
|     value: [{
 | |
|       name: 'AlgorithmIdentifier.algorithm',
 | |
|       tagClass: asn1.Class.UNIVERSAL,
 | |
|       type: asn1.Type.OID,
 | |
|       constructed: false,
 | |
|       capture: 'privateKeyOid'
 | |
|     }]
 | |
|   }, {
 | |
|     // PrivateKey
 | |
|     name: 'PrivateKeyInfo',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.OCTETSTRING,
 | |
|     constructed: false,
 | |
|     capture: 'privateKey'
 | |
|   }]
 | |
| };
 | |
| 
 | |
| // validator for an RSA private key
 | |
| var rsaPrivateKeyValidator = {
 | |
|   // RSAPrivateKey
 | |
|   name: 'RSAPrivateKey',
 | |
|   tagClass: asn1.Class.UNIVERSAL,
 | |
|   type: asn1.Type.SEQUENCE,
 | |
|   constructed: true,
 | |
|   value: [{
 | |
|     // Version (INTEGER)
 | |
|     name: 'RSAPrivateKey.version',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyVersion'
 | |
|   }, {
 | |
|     // modulus (n)
 | |
|     name: 'RSAPrivateKey.modulus',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyModulus'
 | |
|   }, {
 | |
|     // publicExponent (e)
 | |
|     name: 'RSAPrivateKey.publicExponent',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyPublicExponent'
 | |
|   }, {
 | |
|     // privateExponent (d)
 | |
|     name: 'RSAPrivateKey.privateExponent',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyPrivateExponent'
 | |
|   }, {
 | |
|     // prime1 (p)
 | |
|     name: 'RSAPrivateKey.prime1',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyPrime1'
 | |
|   }, {
 | |
|     // prime2 (q)
 | |
|     name: 'RSAPrivateKey.prime2',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyPrime2'
 | |
|   }, {
 | |
|     // exponent1 (d mod (p-1))
 | |
|     name: 'RSAPrivateKey.exponent1',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyExponent1'
 | |
|   }, {
 | |
|     // exponent2 (d mod (q-1))
 | |
|     name: 'RSAPrivateKey.exponent2',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyExponent2'
 | |
|   }, {
 | |
|     // coefficient ((inverse of q) mod p)
 | |
|     name: 'RSAPrivateKey.coefficient',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'privateKeyCoefficient'
 | |
|   }]
 | |
| };
 | |
| 
 | |
| // validator for an RSA public key
 | |
| var rsaPublicKeyValidator = {
 | |
|   // RSAPublicKey
 | |
|   name: 'RSAPublicKey',
 | |
|   tagClass: asn1.Class.UNIVERSAL,
 | |
|   type: asn1.Type.SEQUENCE,
 | |
|   constructed: true,
 | |
|   value: [{
 | |
|     // modulus (n)
 | |
|     name: 'RSAPublicKey.modulus',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'publicKeyModulus'
 | |
|   }, {
 | |
|     // publicExponent (e)
 | |
|     name: 'RSAPublicKey.exponent',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.INTEGER,
 | |
|     constructed: false,
 | |
|     capture: 'publicKeyExponent'
 | |
|   }]
 | |
| };
 | |
| 
 | |
| // validator for an SubjectPublicKeyInfo structure
 | |
| // Note: Currently only works with an RSA public key
 | |
| var publicKeyValidator = forge.pki.rsa.publicKeyValidator = {
 | |
|   name: 'SubjectPublicKeyInfo',
 | |
|   tagClass: asn1.Class.UNIVERSAL,
 | |
|   type: asn1.Type.SEQUENCE,
 | |
|   constructed: true,
 | |
|   captureAsn1: 'subjectPublicKeyInfo',
 | |
|   value: [{
 | |
|     name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.SEQUENCE,
 | |
|     constructed: true,
 | |
|     value: [{
 | |
|       name: 'AlgorithmIdentifier.algorithm',
 | |
|       tagClass: asn1.Class.UNIVERSAL,
 | |
|       type: asn1.Type.OID,
 | |
|       constructed: false,
 | |
|       capture: 'publicKeyOid'
 | |
|     }]
 | |
|   }, {
 | |
|     // subjectPublicKey
 | |
|     name: 'SubjectPublicKeyInfo.subjectPublicKey',
 | |
|     tagClass: asn1.Class.UNIVERSAL,
 | |
|     type: asn1.Type.BITSTRING,
 | |
|     constructed: false,
 | |
|     value: [{
 | |
|       // RSAPublicKey
 | |
|       name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
 | |
|       tagClass: asn1.Class.UNIVERSAL,
 | |
|       type: asn1.Type.SEQUENCE,
 | |
|       constructed: true,
 | |
|       optional: true,
 | |
|       captureAsn1: 'rsaPublicKey'
 | |
|     }]
 | |
|   }]
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Wrap digest in DigestInfo object.
 | |
|  *
 | |
|  * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
 | |
|  *
 | |
|  * DigestInfo ::= SEQUENCE {
 | |
|  *   digestAlgorithm DigestAlgorithmIdentifier,
 | |
|  *   digest Digest
 | |
|  * }
 | |
|  *
 | |
|  * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
 | |
|  * Digest ::= OCTET STRING
 | |
|  *
 | |
|  * @param md the message digest object with the hash to sign.
 | |
|  *
 | |
|  * @return the encoded message (ready for RSA encrytion)
 | |
|  */
 | |
| var emsaPkcs1v15encode = function(md) {
 | |
|   // get the oid for the algorithm
 | |
|   var oid;
 | |
|   if(md.algorithm in pki.oids) {
 | |
|     oid = pki.oids[md.algorithm];
 | |
|   } else {
 | |
|     var error = new Error('Unknown message digest algorithm.');
 | |
|     error.algorithm = md.algorithm;
 | |
|     throw error;
 | |
|   }
 | |
|   var oidBytes = asn1.oidToDer(oid).getBytes();
 | |
| 
 | |
|   // create the digest info
 | |
|   var digestInfo = asn1.create(
 | |
|     asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
 | |
|   var digestAlgorithm = asn1.create(
 | |
|     asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
 | |
|   digestAlgorithm.value.push(asn1.create(
 | |
|     asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes));
 | |
|   digestAlgorithm.value.push(asn1.create(
 | |
|     asn1.Class.UNIVERSAL, asn1.Type.NULL, false, ''));
 | |
|   var digest = asn1.create(
 | |
|     asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING,
 | |
|     false, md.digest().getBytes());
 | |
|   digestInfo.value.push(digestAlgorithm);
 | |
|   digestInfo.value.push(digest);
 | |
| 
 | |
|   // encode digest info
 | |
|   return asn1.toDer(digestInfo).getBytes();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Performs x^c mod n (RSA encryption or decryption operation).
 | |
|  *
 | |
|  * @param x the number to raise and mod.
 | |
|  * @param key the key to use.
 | |
|  * @param pub true if the key is public, false if private.
 | |
|  *
 | |
|  * @return the result of x^c mod n.
 | |
|  */
 | |
| var _modPow = function(x, key, pub) {
 | |
|   if(pub) {
 | |
|     return x.modPow(key.e, key.n);
 | |
|   }
 | |
| 
 | |
|   if(!key.p || !key.q) {
 | |
|     // allow calculation without CRT params (slow)
 | |
|     return x.modPow(key.d, key.n);
 | |
|   }
 | |
| 
 | |
|   // pre-compute dP, dQ, and qInv if necessary
 | |
|   if(!key.dP) {
 | |
|     key.dP = key.d.mod(key.p.subtract(BigInteger.ONE));
 | |
|   }
 | |
|   if(!key.dQ) {
 | |
|     key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE));
 | |
|   }
 | |
|   if(!key.qInv) {
 | |
|     key.qInv = key.q.modInverse(key.p);
 | |
|   }
 | |
| 
 | |
|   /* Chinese remainder theorem (CRT) states:
 | |
| 
 | |
|     Suppose n1, n2, ..., nk are positive integers which are pairwise
 | |
|     coprime (n1 and n2 have no common factors other than 1). For any
 | |
|     integers x1, x2, ..., xk there exists an integer x solving the
 | |
|     system of simultaneous congruences (where ~= means modularly
 | |
|     congruent so a ~= b mod n means a mod n = b mod n):
 | |
| 
 | |
|     x ~= x1 mod n1
 | |
|     x ~= x2 mod n2
 | |
|     ...
 | |
|     x ~= xk mod nk
 | |
| 
 | |
|     This system of congruences has a single simultaneous solution x
 | |
|     between 0 and n - 1. Furthermore, each xk solution and x itself
 | |
|     is congruent modulo the product n = n1*n2*...*nk.
 | |
|     So x1 mod n = x2 mod n = xk mod n = x mod n.
 | |
| 
 | |
|     The single simultaneous solution x can be solved with the following
 | |
|     equation:
 | |
| 
 | |
|     x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.
 | |
| 
 | |
|     Where x is less than n, xi = x mod ni.
 | |
| 
 | |
|     For RSA we are only concerned with k = 2. The modulus n = pq, where
 | |
|     p and q are coprime. The RSA decryption algorithm is:
 | |
| 
 | |
|     y = x^d mod n
 | |
| 
 | |
|     Given the above:
 | |
| 
 | |
|     x1 = x^d mod p
 | |
|     r1 = n/p = q
 | |
|     s1 = q^-1 mod p
 | |
|     x2 = x^d mod q
 | |
|     r2 = n/q = p
 | |
|     s2 = p^-1 mod q
 | |
| 
 | |
|     So y = (x1r1s1 + x2r2s2) mod n
 | |
|          = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n
 | |
| 
 | |
|     According to Fermat's Little Theorem, if the modulus P is prime,
 | |
|     for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
 | |
|     Since A is not divisible by P it follows that if:
 | |
|     N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:
 | |
| 
 | |
|     A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
 | |
|     to calculate). In order to calculate x^d mod p more quickly the
 | |
|     exponent d mod (p - 1) is stored in the RSA private key (the same
 | |
|     is done for x^d mod q). These values are referred to as dP and dQ
 | |
|     respectively. Therefore we now have:
 | |
| 
 | |
|     y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n
 | |
| 
 | |
|     Since we'll be reducing x^dP by modulo p (same for q) we can also
 | |
|     reduce x by p (and q respectively) before hand. Therefore, let
 | |
| 
 | |
|     xp = ((x mod p)^dP mod p), and
 | |
|     xq = ((x mod q)^dQ mod q), yielding:
 | |
| 
 | |
|     y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n
 | |
| 
 | |
|     This can be further reduced to a simple algorithm that only
 | |
|     requires 1 inverse (the q inverse is used) to be used and stored.
 | |
|     The algorithm is called Garner's algorithm. If qInv is the
 | |
|     inverse of q, we simply calculate:
 | |
| 
 | |
|     y = (qInv*(xp - xq) mod p) * q + xq
 | |
| 
 | |
|     However, there are two further complications. First, we need to
 | |
|     ensure that xp > xq to prevent signed BigIntegers from being used
 | |
|     so we add p until this is true (since we will be mod'ing with
 | |
|     p anyway). Then, there is a known timing attack on algorithms
 | |
|     using the CRT. To mitigate this risk, "cryptographic blinding"
 | |
|     should be used. This requires simply generating a random number r
 | |
|     between 0 and n-1 and its inverse and multiplying x by r^e before
 | |
|     calculating y and then multiplying y by r^-1 afterwards. Note that
 | |
|     r must be coprime with n (gcd(r, n) === 1) in order to have an
 | |
|     inverse.
 | |
|   */
 | |
| 
 | |
|   // cryptographic blinding
 | |
|   var r;
 | |
|   do {
 | |
|     r = new BigInteger(
 | |
|       forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)),
 | |
|       16);
 | |
|   } while(r.compareTo(key.n) >= 0 || !r.gcd(key.n).equals(BigInteger.ONE));
 | |
|   x = x.multiply(r.modPow(key.e, key.n)).mod(key.n);
 | |
| 
 | |
|   // calculate xp and xq
 | |
|   var xp = x.mod(key.p).modPow(key.dP, key.p);
 | |
|   var xq = x.mod(key.q).modPow(key.dQ, key.q);
 | |
| 
 | |
|   // xp must be larger than xq to avoid signed bit usage
 | |
|   while(xp.compareTo(xq) < 0) {
 | |
|     xp = xp.add(key.p);
 | |
|   }
 | |
| 
 | |
|   // do last step
 | |
|   var y = xp.subtract(xq)
 | |
|     .multiply(key.qInv).mod(key.p)
 | |
|     .multiply(key.q).add(xq);
 | |
| 
 | |
|   // remove effect of random for cryptographic blinding
 | |
|   y = y.multiply(r.modInverse(key.n)).mod(key.n);
 | |
| 
 | |
|   return y;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or
 | |
|  * 'encrypt' on a public key object instead.
 | |
|  *
 | |
|  * Performs RSA encryption.
 | |
|  *
 | |
|  * The parameter bt controls whether to put padding bytes before the
 | |
|  * message passed in. Set bt to either true or false to disable padding
 | |
|  * completely (in order to handle e.g. EMSA-PSS encoding seperately before),
 | |
|  * signaling whether the encryption operation is a public key operation
 | |
|  * (i.e. encrypting data) or not, i.e. private key operation (data signing).
 | |
|  *
 | |
|  * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
 | |
|  * (for signing) or 0x02 (for encryption). The key operation mode (private
 | |
|  * or public) is derived from this flag in that case).
 | |
|  *
 | |
|  * @param m the message to encrypt as a byte string.
 | |
|  * @param key the RSA key to use.
 | |
|  * @param bt for PKCS#1 v1.5 padding, the block type to use
 | |
|  *   (0x01 for private key, 0x02 for public),
 | |
|  *   to disable padding: true = public key, false = private key.
 | |
|  *
 | |
|  * @return the encrypted bytes as a string.
 | |
|  */
 | |
| pki.rsa.encrypt = function(m, key, bt) {
 | |
|   var pub = bt;
 | |
|   var eb;
 | |
| 
 | |
|   // get the length of the modulus in bytes
 | |
|   var k = Math.ceil(key.n.bitLength() / 8);
 | |
| 
 | |
|   if(bt !== false && bt !== true) {
 | |
|     // legacy, default to PKCS#1 v1.5 padding
 | |
|     pub = (bt === 0x02);
 | |
|     eb = _encodePkcs1_v1_5(m, key, bt);
 | |
|   } else {
 | |
|     eb = forge.util.createBuffer();
 | |
|     eb.putBytes(m);
 | |
|   }
 | |
| 
 | |
|   // load encryption block as big integer 'x'
 | |
|   // FIXME: hex conversion inefficient, get BigInteger w/byte strings
 | |
|   var x = new BigInteger(eb.toHex(), 16);
 | |
| 
 | |
|   // do RSA encryption
 | |
|   var y = _modPow(x, key, pub);
 | |
| 
 | |
|   // convert y into the encrypted data byte string, if y is shorter in
 | |
|   // bytes than k, then prepend zero bytes to fill up ed
 | |
|   // FIXME: hex conversion inefficient, get BigInteger w/byte strings
 | |
|   var yhex = y.toString(16);
 | |
|   var ed = forge.util.createBuffer();
 | |
|   var zeros = k - Math.ceil(yhex.length / 2);
 | |
|   while(zeros > 0) {
 | |
|     ed.putByte(0x00);
 | |
|     --zeros;
 | |
|   }
 | |
|   ed.putBytes(forge.util.hexToBytes(yhex));
 | |
|   return ed.getBytes();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or
 | |
|  * 'verify' on a public key object instead.
 | |
|  *
 | |
|  * Performs RSA decryption.
 | |
|  *
 | |
|  * The parameter ml controls whether to apply PKCS#1 v1.5 padding
 | |
|  * or not.  Set ml = false to disable padding removal completely
 | |
|  * (in order to handle e.g. EMSA-PSS later on) and simply pass back
 | |
|  * the RSA encryption block.
 | |
|  *
 | |
|  * @param ed the encrypted data to decrypt in as a byte string.
 | |
|  * @param key the RSA key to use.
 | |
|  * @param pub true for a public key operation, false for private.
 | |
|  * @param ml the message length, if known, false to disable padding.
 | |
|  *
 | |
|  * @return the decrypted message as a byte string.
 | |
|  */
 | |
| pki.rsa.decrypt = function(ed, key, pub, ml) {
 | |
|   // get the length of the modulus in bytes
 | |
|   var k = Math.ceil(key.n.bitLength() / 8);
 | |
| 
 | |
|   // error if the length of the encrypted data ED is not k
 | |
|   if(ed.length !== k) {
 | |
|     var error = new Error('Encrypted message length is invalid.');
 | |
|     error.length = ed.length;
 | |
|     error.expected = k;
 | |
|     throw error;
 | |
|   }
 | |
| 
 | |
|   // convert encrypted data into a big integer
 | |
|   // FIXME: hex conversion inefficient, get BigInteger w/byte strings
 | |
|   var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16);
 | |
| 
 | |
|   // y must be less than the modulus or it wasn't the result of
 | |
|   // a previous mod operation (encryption) using that modulus
 | |
|   if(y.compareTo(key.n) >= 0) {
 | |
|     throw new Error('Encrypted message is invalid.');
 | |
|   }
 | |
| 
 | |
|   // do RSA decryption
 | |
|   var x = _modPow(y, key, pub);
 | |
| 
 | |
|   // create the encryption block, if x is shorter in bytes than k, then
 | |
|   // prepend zero bytes to fill up eb
 | |
|   // FIXME: hex conversion inefficient, get BigInteger w/byte strings
 | |
|   var xhex = x.toString(16);
 | |
|   var eb = forge.util.createBuffer();
 | |
|   var zeros = k - Math.ceil(xhex.length / 2);
 | |
|   while(zeros > 0) {
 | |
|     eb.putByte(0x00);
 | |
|     --zeros;
 | |
|   }
 | |
|   eb.putBytes(forge.util.hexToBytes(xhex));
 | |
| 
 | |
|   if(ml !== false) {
 | |
|     // legacy, default to PKCS#1 v1.5 padding
 | |
|     return _decodePkcs1_v1_5(eb.getBytes(), key, pub);
 | |
|   }
 | |
| 
 | |
|   // return message
 | |
|   return eb.getBytes();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates an RSA key-pair generation state object. It is used to allow
 | |
|  * key-generation to be performed in steps. It also allows for a UI to
 | |
|  * display progress updates.
 | |
|  *
 | |
|  * @param bits the size for the private key in bits, defaults to 2048.
 | |
|  * @param e the public exponent to use, defaults to 65537 (0x10001).
 | |
|  * @param [options] the options to use.
 | |
|  *          prng a custom crypto-secure pseudo-random number generator to use,
 | |
|  *            that must define "getBytesSync".
 | |
|  *          algorithm the algorithm to use (default: 'PRIMEINC').
 | |
|  *
 | |
|  * @return the state object to use to generate the key-pair.
 | |
|  */
 | |
| pki.rsa.createKeyPairGenerationState = function(bits, e, options) {
 | |
|   // TODO: migrate step-based prime generation code to forge.prime
 | |
| 
 | |
|   // set default bits
 | |
|   if(typeof(bits) === 'string') {
 | |
|     bits = parseInt(bits, 10);
 | |
|   }
 | |
|   bits = bits || 2048;
 | |
| 
 | |
|   // create prng with api that matches BigInteger secure random
 | |
|   options = options || {};
 | |
|   var prng = options.prng || forge.random;
 | |
|   var rng = {
 | |
|     // x is an array to fill with bytes
 | |
|     nextBytes: function(x) {
 | |
|       var b = prng.getBytesSync(x.length);
 | |
|       for(var i = 0; i < x.length; ++i) {
 | |
|         x[i] = b.charCodeAt(i);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   var algorithm = options.algorithm || 'PRIMEINC';
 | |
| 
 | |
|   // create PRIMEINC algorithm state
 | |
|   var rval;
 | |
|   if(algorithm === 'PRIMEINC') {
 | |
|     rval = {
 | |
|       algorithm: algorithm,
 | |
|       state: 0,
 | |
|       bits: bits,
 | |
|       rng: rng,
 | |
|       eInt: e || 65537,
 | |
|       e: new BigInteger(null),
 | |
|       p: null,
 | |
|       q: null,
 | |
|       qBits: bits >> 1,
 | |
|       pBits: bits - (bits >> 1),
 | |
|       pqState: 0,
 | |
|       num: null,
 | |
|       keys: null
 | |
|     };
 | |
|     rval.e.fromInt(rval.eInt);
 | |
|   } else {
 | |
|     throw new Error('Invalid key generation algorithm: ' + algorithm);
 | |
|   }
 | |
| 
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Attempts to runs the key-generation algorithm for at most n seconds
 | |
|  * (approximately) using the given state. When key-generation has completed,
 | |
|  * the keys will be stored in state.keys.
 | |
|  *
 | |
|  * To use this function to update a UI while generating a key or to prevent
 | |
|  * causing browser lockups/warnings, set "n" to a value other than 0. A
 | |
|  * simple pattern for generating a key and showing a progress indicator is:
 | |
|  *
 | |
|  * var state = pki.rsa.createKeyPairGenerationState(2048);
 | |
|  * var step = function() {
 | |
|  *   // step key-generation, run algorithm for 100 ms, repeat
 | |
|  *   if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
 | |
|  *     setTimeout(step, 1);
 | |
|  *   } else {
 | |
|  *     // key-generation complete
 | |
|  *     // TODO: turn off progress indicator here
 | |
|  *     // TODO: use the generated key-pair in "state.keys"
 | |
|  *   }
 | |
|  * };
 | |
|  * // TODO: turn on progress indicator here
 | |
|  * setTimeout(step, 0);
 | |
|  *
 | |
|  * @param state the state to use.
 | |
|  * @param n the maximum number of milliseconds to run the algorithm for, 0
 | |
|  *          to run the algorithm to completion.
 | |
|  *
 | |
|  * @return true if the key-generation completed, false if not.
 | |
|  */
 | |
| pki.rsa.stepKeyPairGenerationState = function(state, n) {
 | |
|   // set default algorithm if not set
 | |
|   if(!('algorithm' in state)) {
 | |
|     state.algorithm = 'PRIMEINC';
 | |
|   }
 | |
| 
 | |
|   // TODO: migrate step-based prime generation code to forge.prime
 | |
|   // TODO: abstract as PRIMEINC algorithm
 | |
| 
 | |
|   // do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
 | |
|   // with some minor optimizations and designed to run in steps
 | |
| 
 | |
|   // local state vars
 | |
|   var THIRTY = new BigInteger(null);
 | |
|   THIRTY.fromInt(30);
 | |
|   var deltaIdx = 0;
 | |
|   var op_or = function(x, y) {return x | y;};
 | |
| 
 | |
|   // keep stepping until time limit is reached or done
 | |
|   var t1 = +new Date();
 | |
|   var t2;
 | |
|   var total = 0;
 | |
|   while(state.keys === null && (n <= 0 || total < n)) {
 | |
|     // generate p or q
 | |
|     if(state.state === 0) {
 | |
|       /* Note: All primes are of the form:
 | |
| 
 | |
|         30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i
 | |
| 
 | |
|         When we generate a random number, we always align it at 30k + 1. Each
 | |
|         time the number is determined not to be prime we add to get to the
 | |
|         next 'i', eg: if the number was at 30k + 1 we add 6. */
 | |
|       var bits = (state.p === null) ? state.pBits : state.qBits;
 | |
|       var bits1 = bits - 1;
 | |
| 
 | |
|       // get a random number
 | |
|       if(state.pqState === 0) {
 | |
|         state.num = new BigInteger(bits, state.rng);
 | |
|         // force MSB set
 | |
|         if(!state.num.testBit(bits1)) {
 | |
|           state.num.bitwiseTo(
 | |
|             BigInteger.ONE.shiftLeft(bits1), op_or, state.num);
 | |
|         }
 | |
|         // align number on 30k+1 boundary
 | |
|         state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
 | |
|         deltaIdx = 0;
 | |
| 
 | |
|         ++state.pqState;
 | |
|       } else if(state.pqState === 1) {
 | |
|         // try to make the number a prime
 | |
|         if(state.num.bitLength() > bits) {
 | |
|           // overflow, try again
 | |
|           state.pqState = 0;
 | |
|           // do primality test
 | |
|         } else if(state.num.isProbablePrime(
 | |
|           _getMillerRabinTests(state.num.bitLength()))) {
 | |
|           ++state.pqState;
 | |
|         } else {
 | |
|           // get next potential prime
 | |
|           state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
 | |
|         }
 | |
|       } else if(state.pqState === 2) {
 | |
|         // ensure number is coprime with e
 | |
|         state.pqState =
 | |
|           (state.num.subtract(BigInteger.ONE).gcd(state.e)
 | |
|             .compareTo(BigInteger.ONE) === 0) ? 3 : 0;
 | |
|       } else if(state.pqState === 3) {
 | |
|         // store p or q
 | |
|         state.pqState = 0;
 | |
|         if(state.p === null) {
 | |
|           state.p = state.num;
 | |
|         } else {
 | |
|           state.q = state.num;
 | |
|         }
 | |
| 
 | |
|         // advance state if both p and q are ready
 | |
|         if(state.p !== null && state.q !== null) {
 | |
|           ++state.state;
 | |
|         }
 | |
|         state.num = null;
 | |
|       }
 | |
|     } else if(state.state === 1) {
 | |
|       // ensure p is larger than q (swap them if not)
 | |
|       if(state.p.compareTo(state.q) < 0) {
 | |
|         state.num = state.p;
 | |
|         state.p = state.q;
 | |
|         state.q = state.num;
 | |
|       }
 | |
|       ++state.state;
 | |
|     } else if(state.state === 2) {
 | |
|       // compute phi: (p - 1)(q - 1) (Euler's totient function)
 | |
|       state.p1 = state.p.subtract(BigInteger.ONE);
 | |
|       state.q1 = state.q.subtract(BigInteger.ONE);
 | |
|       state.phi = state.p1.multiply(state.q1);
 | |
|       ++state.state;
 | |
|     } else if(state.state === 3) {
 | |
|       // ensure e and phi are coprime
 | |
|       if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) {
 | |
|         // phi and e are coprime, advance
 | |
|         ++state.state;
 | |
|       } else {
 | |
|         // phi and e aren't coprime, so generate a new p and q
 | |
|         state.p = null;
 | |
|         state.q = null;
 | |
|         state.state = 0;
 | |
|       }
 | |
|     } else if(state.state === 4) {
 | |
|       // create n, ensure n is has the right number of bits
 | |
|       state.n = state.p.multiply(state.q);
 | |
| 
 | |
|       // ensure n is right number of bits
 | |
|       if(state.n.bitLength() === state.bits) {
 | |
|         // success, advance
 | |
|         ++state.state;
 | |
|       } else {
 | |
|         // failed, get new q
 | |
|         state.q = null;
 | |
|         state.state = 0;
 | |
|       }
 | |
|     } else if(state.state === 5) {
 | |
|       // set keys
 | |
|       var d = state.e.modInverse(state.phi);
 | |
|       state.keys = {
 | |
|         privateKey: pki.rsa.setPrivateKey(
 | |
|           state.n, state.e, d, state.p, state.q,
 | |
|           d.mod(state.p1), d.mod(state.q1),
 | |
|           state.q.modInverse(state.p)),
 | |
|         publicKey: pki.rsa.setPublicKey(state.n, state.e)
 | |
|       };
 | |
|     }
 | |
| 
 | |
|     // update timing
 | |
|     t2 = +new Date();
 | |
|     total += t2 - t1;
 | |
|     t1 = t2;
 | |
|   }
 | |
| 
 | |
|   return state.keys !== null;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Generates an RSA public-private key pair in a single call.
 | |
|  *
 | |
|  * To generate a key-pair in steps (to allow for progress updates and to
 | |
|  * prevent blocking or warnings in slow browsers) then use the key-pair
 | |
|  * generation state functions.
 | |
|  *
 | |
|  * To generate a key-pair asynchronously (either through web-workers, if
 | |
|  * available, or by breaking up the work on the main thread), pass a
 | |
|  * callback function.
 | |
|  *
 | |
|  * @param [bits] the size for the private key in bits, defaults to 2048.
 | |
|  * @param [e] the public exponent to use, defaults to 65537.
 | |
|  * @param [options] options for key-pair generation, if given then 'bits'
 | |
|  *            and 'e' must *not* be given:
 | |
|  *          bits the size for the private key in bits, (default: 2048).
 | |
|  *          e the public exponent to use, (default: 65537 (0x10001)).
 | |
|  *          workerScript the worker script URL.
 | |
|  *          workers the number of web workers (if supported) to use,
 | |
|  *            (default: 2).
 | |
|  *          workLoad the size of the work load, ie: number of possible prime
 | |
|  *            numbers for each web worker to check per work assignment,
 | |
|  *            (default: 100).
 | |
|  *          prng a custom crypto-secure pseudo-random number generator to use,
 | |
|  *            that must define "getBytesSync". Disables use of native APIs.
 | |
|  *          algorithm the algorithm to use (default: 'PRIMEINC').
 | |
|  * @param [callback(err, keypair)] called once the operation completes.
 | |
|  *
 | |
|  * @return an object with privateKey and publicKey properties.
 | |
|  */
 | |
| pki.rsa.generateKeyPair = function(bits, e, options, callback) {
 | |
|   // (bits), (options), (callback)
 | |
|   if(arguments.length === 1) {
 | |
|     if(typeof bits === 'object') {
 | |
|       options = bits;
 | |
|       bits = undefined;
 | |
|     } else if(typeof bits === 'function') {
 | |
|       callback = bits;
 | |
|       bits = undefined;
 | |
|     }
 | |
|   } else if(arguments.length === 2) {
 | |
|     // (bits, e), (bits, options), (bits, callback), (options, callback)
 | |
|     if(typeof bits === 'number') {
 | |
|       if(typeof e === 'function') {
 | |
|         callback = e;
 | |
|         e = undefined;
 | |
|       } else if(typeof e !== 'number') {
 | |
|         options = e;
 | |
|         e = undefined;
 | |
|       }
 | |
|     } else {
 | |
|       options = bits;
 | |
|       callback = e;
 | |
|       bits = undefined;
 | |
|       e = undefined;
 | |
|     }
 | |
|   } else if(arguments.length === 3) {
 | |
|     // (bits, e, options), (bits, e, callback), (bits, options, callback)
 | |
|     if(typeof e === 'number') {
 | |
|       if(typeof options === 'function') {
 | |
|         callback = options;
 | |
|         options = undefined;
 | |
|       }
 | |
|     } else {
 | |
|       callback = options;
 | |
|       options = e;
 | |
|       e = undefined;
 | |
|     }
 | |
|   }
 | |
|   options = options || {};
 | |
|   if(bits === undefined) {
 | |
|     bits = options.bits || 2048;
 | |
|   }
 | |
|   if(e === undefined) {
 | |
|     e = options.e || 0x10001;
 | |
|   }
 | |
| 
 | |
|   // use native code if permitted, available, and parameters are acceptable
 | |
|   if(!forge.options.usePureJavaScript && !options.prng &&
 | |
|     bits >= 256 && bits <= 16384 && (e === 0x10001 || e === 3)) {
 | |
|     if(callback) {
 | |
|       // try native async
 | |
|       if(_detectNodeCrypto('generateKeyPair')) {
 | |
|         return _crypto.generateKeyPair('rsa', {
 | |
|           modulusLength: bits,
 | |
|           publicExponent: e,
 | |
|           publicKeyEncoding: {
 | |
|             type: 'spki',
 | |
|             format: 'pem'
 | |
|           },
 | |
|           privateKeyEncoding: {
 | |
|             type: 'pkcs8',
 | |
|             format: 'pem'
 | |
|           }
 | |
|         }, function(err, pub, priv) {
 | |
|           if(err) {
 | |
|             return callback(err);
 | |
|           }
 | |
|           callback(null, {
 | |
|             privateKey: pki.privateKeyFromPem(priv),
 | |
|             publicKey: pki.publicKeyFromPem(pub)
 | |
|           });
 | |
|         });
 | |
|       }
 | |
|       if(_detectSubtleCrypto('generateKey') &&
 | |
|         _detectSubtleCrypto('exportKey')) {
 | |
|         // use standard native generateKey
 | |
|         return util.globalScope.crypto.subtle.generateKey({
 | |
|           name: 'RSASSA-PKCS1-v1_5',
 | |
|           modulusLength: bits,
 | |
|           publicExponent: _intToUint8Array(e),
 | |
|           hash: {name: 'SHA-256'}
 | |
|         }, true /* key can be exported*/, ['sign', 'verify'])
 | |
|         .then(function(pair) {
 | |
|           return util.globalScope.crypto.subtle.exportKey(
 | |
|             'pkcs8', pair.privateKey);
 | |
|         // avoiding catch(function(err) {...}) to support IE <= 8
 | |
|         }).then(undefined, function(err) {
 | |
|           callback(err);
 | |
|         }).then(function(pkcs8) {
 | |
|           if(pkcs8) {
 | |
|             var privateKey = pki.privateKeyFromAsn1(
 | |
|               asn1.fromDer(forge.util.createBuffer(pkcs8)));
 | |
|             callback(null, {
 | |
|               privateKey: privateKey,
 | |
|               publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e)
 | |
|             });
 | |
|           }
 | |
|         });
 | |
|       }
 | |
|       if(_detectSubtleMsCrypto('generateKey') &&
 | |
|         _detectSubtleMsCrypto('exportKey')) {
 | |
|         var genOp = util.globalScope.msCrypto.subtle.generateKey({
 | |
|           name: 'RSASSA-PKCS1-v1_5',
 | |
|           modulusLength: bits,
 | |
|           publicExponent: _intToUint8Array(e),
 | |
|           hash: {name: 'SHA-256'}
 | |
|         }, true /* key can be exported*/, ['sign', 'verify']);
 | |
|         genOp.oncomplete = function(e) {
 | |
|           var pair = e.target.result;
 | |
|           var exportOp = util.globalScope.msCrypto.subtle.exportKey(
 | |
|             'pkcs8', pair.privateKey);
 | |
|           exportOp.oncomplete = function(e) {
 | |
|             var pkcs8 = e.target.result;
 | |
|             var privateKey = pki.privateKeyFromAsn1(
 | |
|               asn1.fromDer(forge.util.createBuffer(pkcs8)));
 | |
|             callback(null, {
 | |
|               privateKey: privateKey,
 | |
|               publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e)
 | |
|             });
 | |
|           };
 | |
|           exportOp.onerror = function(err) {
 | |
|             callback(err);
 | |
|           };
 | |
|         };
 | |
|         genOp.onerror = function(err) {
 | |
|           callback(err);
 | |
|         };
 | |
|         return;
 | |
|       }
 | |
|     } else {
 | |
|       // try native sync
 | |
|       if(_detectNodeCrypto('generateKeyPairSync')) {
 | |
|         var keypair = _crypto.generateKeyPairSync('rsa', {
 | |
|           modulusLength: bits,
 | |
|           publicExponent: e,
 | |
|           publicKeyEncoding: {
 | |
|             type: 'spki',
 | |
|             format: 'pem'
 | |
|           },
 | |
|           privateKeyEncoding: {
 | |
|             type: 'pkcs8',
 | |
|             format: 'pem'
 | |
|           }
 | |
|         });
 | |
|         return {
 | |
|           privateKey: pki.privateKeyFromPem(keypair.privateKey),
 | |
|           publicKey: pki.publicKeyFromPem(keypair.publicKey)
 | |
|         };
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // use JavaScript implementation
 | |
|   var state = pki.rsa.createKeyPairGenerationState(bits, e, options);
 | |
|   if(!callback) {
 | |
|     pki.rsa.stepKeyPairGenerationState(state, 0);
 | |
|     return state.keys;
 | |
|   }
 | |
|   _generateKeyPair(state, options, callback);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Sets an RSA public key from BigIntegers modulus and exponent.
 | |
|  *
 | |
|  * @param n the modulus.
 | |
|  * @param e the exponent.
 | |
|  *
 | |
|  * @return the public key.
 | |
|  */
 | |
| pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) {
 | |
|   var key = {
 | |
|     n: n,
 | |
|     e: e
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Encrypts the given data with this public key. Newer applications
 | |
|    * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for
 | |
|    * legacy applications.
 | |
|    *
 | |
|    * @param data the byte string to encrypt.
 | |
|    * @param scheme the encryption scheme to use:
 | |
|    *          'RSAES-PKCS1-V1_5' (default),
 | |
|    *          'RSA-OAEP',
 | |
|    *          'RAW', 'NONE', or null to perform raw RSA encryption,
 | |
|    *          an object with an 'encode' property set to a function
 | |
|    *          with the signature 'function(data, key)' that returns
 | |
|    *          a binary-encoded string representing the encoded data.
 | |
|    * @param schemeOptions any scheme-specific options.
 | |
|    *
 | |
|    * @return the encrypted byte string.
 | |
|    */
 | |
|   key.encrypt = function(data, scheme, schemeOptions) {
 | |
|     if(typeof scheme === 'string') {
 | |
|       scheme = scheme.toUpperCase();
 | |
|     } else if(scheme === undefined) {
 | |
|       scheme = 'RSAES-PKCS1-V1_5';
 | |
|     }
 | |
| 
 | |
|     if(scheme === 'RSAES-PKCS1-V1_5') {
 | |
|       scheme = {
 | |
|         encode: function(m, key, pub) {
 | |
|           return _encodePkcs1_v1_5(m, key, 0x02).getBytes();
 | |
|         }
 | |
|       };
 | |
|     } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
 | |
|       scheme = {
 | |
|         encode: function(m, key) {
 | |
|           return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions);
 | |
|         }
 | |
|       };
 | |
|     } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
 | |
|       scheme = {encode: function(e) {return e;}};
 | |
|     } else if(typeof scheme === 'string') {
 | |
|       throw new Error('Unsupported encryption scheme: "' + scheme + '".');
 | |
|     }
 | |
| 
 | |
|     // do scheme-based encoding then rsa encryption
 | |
|     var e = scheme.encode(data, key, true);
 | |
|     return pki.rsa.encrypt(e, key, true);
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Verifies the given signature against the given digest.
 | |
|    *
 | |
|    * PKCS#1 supports multiple (currently two) signature schemes:
 | |
|    * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
 | |
|    *
 | |
|    * By default this implementation uses the "old scheme", i.e.
 | |
|    * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the
 | |
|    * signature is an OCTET STRING that holds a DigestInfo.
 | |
|    *
 | |
|    * DigestInfo ::= SEQUENCE {
 | |
|    *   digestAlgorithm DigestAlgorithmIdentifier,
 | |
|    *   digest Digest
 | |
|    * }
 | |
|    * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
 | |
|    * Digest ::= OCTET STRING
 | |
|    *
 | |
|    * To perform PSS signature verification, provide an instance
 | |
|    * of Forge PSS object as the scheme parameter.
 | |
|    *
 | |
|    * @param digest the message digest hash to compare against the signature,
 | |
|    *          as a binary-encoded string.
 | |
|    * @param signature the signature to verify, as a binary-encoded string.
 | |
|    * @param scheme signature verification scheme to use:
 | |
|    *          'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
 | |
|    *          a Forge PSS object for RSASSA-PSS,
 | |
|    *          'NONE' or null for none, DigestInfo will not be expected, but
 | |
|    *            PKCS#1 v1.5 padding will still be used.
 | |
|    *
 | |
|    * @return true if the signature was verified, false if not.
 | |
|    */
 | |
|   key.verify = function(digest, signature, scheme) {
 | |
|     if(typeof scheme === 'string') {
 | |
|       scheme = scheme.toUpperCase();
 | |
|     } else if(scheme === undefined) {
 | |
|       scheme = 'RSASSA-PKCS1-V1_5';
 | |
|     }
 | |
| 
 | |
|     if(scheme === 'RSASSA-PKCS1-V1_5') {
 | |
|       scheme = {
 | |
|         verify: function(digest, d) {
 | |
|           // remove padding
 | |
|           d = _decodePkcs1_v1_5(d, key, true);
 | |
|           // d is ASN.1 BER-encoded DigestInfo
 | |
|           var obj = asn1.fromDer(d);
 | |
|           // compare the given digest to the decrypted one
 | |
|           return digest === obj.value[1].value;
 | |
|         }
 | |
|       };
 | |
|     } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
 | |
|       scheme = {
 | |
|         verify: function(digest, d) {
 | |
|           // remove padding
 | |
|           d = _decodePkcs1_v1_5(d, key, true);
 | |
|           return digest === d;
 | |
|         }
 | |
|       };
 | |
|     }
 | |
| 
 | |
|     // do rsa decryption w/o any decoding, then verify -- which does decoding
 | |
|     var d = pki.rsa.decrypt(signature, key, true, false);
 | |
|     return scheme.verify(digest, d, key.n.bitLength());
 | |
|   };
 | |
| 
 | |
|   return key;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Sets an RSA private key from BigIntegers modulus, exponent, primes,
 | |
|  * prime exponents, and modular multiplicative inverse.
 | |
|  *
 | |
|  * @param n the modulus.
 | |
|  * @param e the public exponent.
 | |
|  * @param d the private exponent ((inverse of e) mod n).
 | |
|  * @param p the first prime.
 | |
|  * @param q the second prime.
 | |
|  * @param dP exponent1 (d mod (p-1)).
 | |
|  * @param dQ exponent2 (d mod (q-1)).
 | |
|  * @param qInv ((inverse of q) mod p)
 | |
|  *
 | |
|  * @return the private key.
 | |
|  */
 | |
| pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function(
 | |
|   n, e, d, p, q, dP, dQ, qInv) {
 | |
|   var key = {
 | |
|     n: n,
 | |
|     e: e,
 | |
|     d: d,
 | |
|     p: p,
 | |
|     q: q,
 | |
|     dP: dP,
 | |
|     dQ: dQ,
 | |
|     qInv: qInv
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Decrypts the given data with this private key. The decryption scheme
 | |
|    * must match the one used to encrypt the data.
 | |
|    *
 | |
|    * @param data the byte string to decrypt.
 | |
|    * @param scheme the decryption scheme to use:
 | |
|    *          'RSAES-PKCS1-V1_5' (default),
 | |
|    *          'RSA-OAEP',
 | |
|    *          'RAW', 'NONE', or null to perform raw RSA decryption.
 | |
|    * @param schemeOptions any scheme-specific options.
 | |
|    *
 | |
|    * @return the decrypted byte string.
 | |
|    */
 | |
|   key.decrypt = function(data, scheme, schemeOptions) {
 | |
|     if(typeof scheme === 'string') {
 | |
|       scheme = scheme.toUpperCase();
 | |
|     } else if(scheme === undefined) {
 | |
|       scheme = 'RSAES-PKCS1-V1_5';
 | |
|     }
 | |
| 
 | |
|     // do rsa decryption w/o any decoding
 | |
|     var d = pki.rsa.decrypt(data, key, false, false);
 | |
| 
 | |
|     if(scheme === 'RSAES-PKCS1-V1_5') {
 | |
|       scheme = {decode: _decodePkcs1_v1_5};
 | |
|     } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
 | |
|       scheme = {
 | |
|         decode: function(d, key) {
 | |
|           return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions);
 | |
|         }
 | |
|       };
 | |
|     } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
 | |
|       scheme = {decode: function(d) {return d;}};
 | |
|     } else {
 | |
|       throw new Error('Unsupported encryption scheme: "' + scheme + '".');
 | |
|     }
 | |
| 
 | |
|     // decode according to scheme
 | |
|     return scheme.decode(d, key, false);
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Signs the given digest, producing a signature.
 | |
|    *
 | |
|    * PKCS#1 supports multiple (currently two) signature schemes:
 | |
|    * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
 | |
|    *
 | |
|    * By default this implementation uses the "old scheme", i.e.
 | |
|    * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide
 | |
|    * an instance of Forge PSS object as the scheme parameter.
 | |
|    *
 | |
|    * @param md the message digest object with the hash to sign.
 | |
|    * @param scheme the signature scheme to use:
 | |
|    *          'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
 | |
|    *          a Forge PSS object for RSASSA-PSS,
 | |
|    *          'NONE' or null for none, DigestInfo will not be used but
 | |
|    *            PKCS#1 v1.5 padding will still be used.
 | |
|    *
 | |
|    * @return the signature as a byte string.
 | |
|    */
 | |
|   key.sign = function(md, scheme) {
 | |
|     /* Note: The internal implementation of RSA operations is being
 | |
|       transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy
 | |
|       code like the use of an encoding block identifier 'bt' will eventually
 | |
|       be removed. */
 | |
| 
 | |
|     // private key operation
 | |
|     var bt = false;
 | |
| 
 | |
|     if(typeof scheme === 'string') {
 | |
|       scheme = scheme.toUpperCase();
 | |
|     }
 | |
| 
 | |
|     if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') {
 | |
|       scheme = {encode: emsaPkcs1v15encode};
 | |
|       bt = 0x01;
 | |
|     } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
 | |
|       scheme = {encode: function() {return md;}};
 | |
|       bt = 0x01;
 | |
|     }
 | |
| 
 | |
|     // encode and then encrypt
 | |
|     var d = scheme.encode(md, key.n.bitLength());
 | |
|     return pki.rsa.encrypt(d, key, bt);
 | |
|   };
 | |
| 
 | |
|   return key;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object.
 | |
|  *
 | |
|  * @param rsaKey the ASN.1 RSAPrivateKey.
 | |
|  *
 | |
|  * @return the ASN.1 PrivateKeyInfo.
 | |
|  */
 | |
| pki.wrapRsaPrivateKey = function(rsaKey) {
 | |
|   // PrivateKeyInfo
 | |
|   return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
 | |
|     // version (0)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       asn1.integerToDer(0).getBytes()),
 | |
|     // privateKeyAlgorithm
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
 | |
|       asn1.create(
 | |
|         asn1.Class.UNIVERSAL, asn1.Type.OID, false,
 | |
|         asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
 | |
|       asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
 | |
|     ]),
 | |
|     // PrivateKey
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false,
 | |
|       asn1.toDer(rsaKey).getBytes())
 | |
|   ]);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Converts a private key from an ASN.1 object.
 | |
|  *
 | |
|  * @param obj the ASN.1 representation of a PrivateKeyInfo containing an
 | |
|  *          RSAPrivateKey or an RSAPrivateKey.
 | |
|  *
 | |
|  * @return the private key.
 | |
|  */
 | |
| pki.privateKeyFromAsn1 = function(obj) {
 | |
|   // get PrivateKeyInfo
 | |
|   var capture = {};
 | |
|   var errors = [];
 | |
|   if(asn1.validate(obj, privateKeyValidator, capture, errors)) {
 | |
|     obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey));
 | |
|   }
 | |
| 
 | |
|   // get RSAPrivateKey
 | |
|   capture = {};
 | |
|   errors = [];
 | |
|   if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) {
 | |
|     var error = new Error('Cannot read private key. ' +
 | |
|       'ASN.1 object does not contain an RSAPrivateKey.');
 | |
|     error.errors = errors;
 | |
|     throw error;
 | |
|   }
 | |
| 
 | |
|   // Note: Version is currently ignored.
 | |
|   // capture.privateKeyVersion
 | |
|   // FIXME: inefficient, get a BigInteger that uses byte strings
 | |
|   var n, e, d, p, q, dP, dQ, qInv;
 | |
|   n = forge.util.createBuffer(capture.privateKeyModulus).toHex();
 | |
|   e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex();
 | |
|   d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex();
 | |
|   p = forge.util.createBuffer(capture.privateKeyPrime1).toHex();
 | |
|   q = forge.util.createBuffer(capture.privateKeyPrime2).toHex();
 | |
|   dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex();
 | |
|   dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex();
 | |
|   qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex();
 | |
| 
 | |
|   // set private key
 | |
|   return pki.setRsaPrivateKey(
 | |
|     new BigInteger(n, 16),
 | |
|     new BigInteger(e, 16),
 | |
|     new BigInteger(d, 16),
 | |
|     new BigInteger(p, 16),
 | |
|     new BigInteger(q, 16),
 | |
|     new BigInteger(dP, 16),
 | |
|     new BigInteger(dQ, 16),
 | |
|     new BigInteger(qInv, 16));
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Converts a private key to an ASN.1 RSAPrivateKey.
 | |
|  *
 | |
|  * @param key the private key.
 | |
|  *
 | |
|  * @return the ASN.1 representation of an RSAPrivateKey.
 | |
|  */
 | |
| pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) {
 | |
|   // RSAPrivateKey
 | |
|   return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
 | |
|     // version (0 = only 2 primes, 1 multiple primes)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       asn1.integerToDer(0).getBytes()),
 | |
|     // modulus (n)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.n)),
 | |
|     // publicExponent (e)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.e)),
 | |
|     // privateExponent (d)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.d)),
 | |
|     // privateKeyPrime1 (p)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.p)),
 | |
|     // privateKeyPrime2 (q)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.q)),
 | |
|     // privateKeyExponent1 (dP)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.dP)),
 | |
|     // privateKeyExponent2 (dQ)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.dQ)),
 | |
|     // coefficient (qInv)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.qInv))
 | |
|   ]);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey.
 | |
|  *
 | |
|  * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey.
 | |
|  *
 | |
|  * @return the public key.
 | |
|  */
 | |
| pki.publicKeyFromAsn1 = function(obj) {
 | |
|   // get SubjectPublicKeyInfo
 | |
|   var capture = {};
 | |
|   var errors = [];
 | |
|   if(asn1.validate(obj, publicKeyValidator, capture, errors)) {
 | |
|     // get oid
 | |
|     var oid = asn1.derToOid(capture.publicKeyOid);
 | |
|     if(oid !== pki.oids.rsaEncryption) {
 | |
|       var error = new Error('Cannot read public key. Unknown OID.');
 | |
|       error.oid = oid;
 | |
|       throw error;
 | |
|     }
 | |
|     obj = capture.rsaPublicKey;
 | |
|   }
 | |
| 
 | |
|   // get RSA params
 | |
|   errors = [];
 | |
|   if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) {
 | |
|     var error = new Error('Cannot read public key. ' +
 | |
|       'ASN.1 object does not contain an RSAPublicKey.');
 | |
|     error.errors = errors;
 | |
|     throw error;
 | |
|   }
 | |
| 
 | |
|   // FIXME: inefficient, get a BigInteger that uses byte strings
 | |
|   var n = forge.util.createBuffer(capture.publicKeyModulus).toHex();
 | |
|   var e = forge.util.createBuffer(capture.publicKeyExponent).toHex();
 | |
| 
 | |
|   // set public key
 | |
|   return pki.setRsaPublicKey(
 | |
|     new BigInteger(n, 16),
 | |
|     new BigInteger(e, 16));
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Converts a public key to an ASN.1 SubjectPublicKeyInfo.
 | |
|  *
 | |
|  * @param key the public key.
 | |
|  *
 | |
|  * @return the asn1 representation of a SubjectPublicKeyInfo.
 | |
|  */
 | |
| pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) {
 | |
|   // SubjectPublicKeyInfo
 | |
|   return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
 | |
|     // AlgorithmIdentifier
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
 | |
|       // algorithm
 | |
|       asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
 | |
|         asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
 | |
|       // parameters (null)
 | |
|       asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
 | |
|     ]),
 | |
|     // subjectPublicKey
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [
 | |
|       pki.publicKeyToRSAPublicKey(key)
 | |
|     ])
 | |
|   ]);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Converts a public key to an ASN.1 RSAPublicKey.
 | |
|  *
 | |
|  * @param key the public key.
 | |
|  *
 | |
|  * @return the asn1 representation of a RSAPublicKey.
 | |
|  */
 | |
| pki.publicKeyToRSAPublicKey = function(key) {
 | |
|   // RSAPublicKey
 | |
|   return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
 | |
|     // modulus (n)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.n)),
 | |
|     // publicExponent (e)
 | |
|     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
 | |
|       _bnToBytes(key.e))
 | |
|   ]);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Encodes a message using PKCS#1 v1.5 padding.
 | |
|  *
 | |
|  * @param m the message to encode.
 | |
|  * @param key the RSA key to use.
 | |
|  * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02
 | |
|  *          (for encryption).
 | |
|  *
 | |
|  * @return the padded byte buffer.
 | |
|  */
 | |
| function _encodePkcs1_v1_5(m, key, bt) {
 | |
|   var eb = forge.util.createBuffer();
 | |
| 
 | |
|   // get the length of the modulus in bytes
 | |
|   var k = Math.ceil(key.n.bitLength() / 8);
 | |
| 
 | |
|   /* use PKCS#1 v1.5 padding */
 | |
|   if(m.length > (k - 11)) {
 | |
|     var error = new Error('Message is too long for PKCS#1 v1.5 padding.');
 | |
|     error.length = m.length;
 | |
|     error.max = k - 11;
 | |
|     throw error;
 | |
|   }
 | |
| 
 | |
|   /* A block type BT, a padding string PS, and the data D shall be
 | |
|     formatted into an octet string EB, the encryption block:
 | |
| 
 | |
|     EB = 00 || BT || PS || 00 || D
 | |
| 
 | |
|     The block type BT shall be a single octet indicating the structure of
 | |
|     the encryption block. For this version of the document it shall have
 | |
|     value 00, 01, or 02. For a private-key operation, the block type
 | |
|     shall be 00 or 01. For a public-key operation, it shall be 02.
 | |
| 
 | |
|     The padding string PS shall consist of k-3-||D|| octets. For block
 | |
|     type 00, the octets shall have value 00; for block type 01, they
 | |
|     shall have value FF; and for block type 02, they shall be
 | |
|     pseudorandomly generated and nonzero. This makes the length of the
 | |
|     encryption block EB equal to k. */
 | |
| 
 | |
|   // build the encryption block
 | |
|   eb.putByte(0x00);
 | |
|   eb.putByte(bt);
 | |
| 
 | |
|   // create the padding
 | |
|   var padNum = k - 3 - m.length;
 | |
|   var padByte;
 | |
|   // private key op
 | |
|   if(bt === 0x00 || bt === 0x01) {
 | |
|     padByte = (bt === 0x00) ? 0x00 : 0xFF;
 | |
|     for(var i = 0; i < padNum; ++i) {
 | |
|       eb.putByte(padByte);
 | |
|     }
 | |
|   } else {
 | |
|     // public key op
 | |
|     // pad with random non-zero values
 | |
|     while(padNum > 0) {
 | |
|       var numZeros = 0;
 | |
|       var padBytes = forge.random.getBytes(padNum);
 | |
|       for(var i = 0; i < padNum; ++i) {
 | |
|         padByte = padBytes.charCodeAt(i);
 | |
|         if(padByte === 0) {
 | |
|           ++numZeros;
 | |
|         } else {
 | |
|           eb.putByte(padByte);
 | |
|         }
 | |
|       }
 | |
|       padNum = numZeros;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // zero followed by message
 | |
|   eb.putByte(0x00);
 | |
|   eb.putBytes(m);
 | |
| 
 | |
|   return eb;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decodes a message using PKCS#1 v1.5 padding.
 | |
|  *
 | |
|  * @param em the message to decode.
 | |
|  * @param key the RSA key to use.
 | |
|  * @param pub true if the key is a public key, false if it is private.
 | |
|  * @param ml the message length, if specified.
 | |
|  *
 | |
|  * @return the decoded bytes.
 | |
|  */
 | |
| function _decodePkcs1_v1_5(em, key, pub, ml) {
 | |
|   // get the length of the modulus in bytes
 | |
|   var k = Math.ceil(key.n.bitLength() / 8);
 | |
| 
 | |
|   /* It is an error if any of the following conditions occurs:
 | |
| 
 | |
|     1. The encryption block EB cannot be parsed unambiguously.
 | |
|     2. The padding string PS consists of fewer than eight octets
 | |
|       or is inconsisent with the block type BT.
 | |
|     3. The decryption process is a public-key operation and the block
 | |
|       type BT is not 00 or 01, or the decryption process is a
 | |
|       private-key operation and the block type is not 02.
 | |
|    */
 | |
| 
 | |
|   // parse the encryption block
 | |
|   var eb = forge.util.createBuffer(em);
 | |
|   var first = eb.getByte();
 | |
|   var bt = eb.getByte();
 | |
|   if(first !== 0x00 ||
 | |
|     (pub && bt !== 0x00 && bt !== 0x01) ||
 | |
|     (!pub && bt != 0x02) ||
 | |
|     (pub && bt === 0x00 && typeof(ml) === 'undefined')) {
 | |
|     throw new Error('Encryption block is invalid.');
 | |
|   }
 | |
| 
 | |
|   var padNum = 0;
 | |
|   if(bt === 0x00) {
 | |
|     // check all padding bytes for 0x00
 | |
|     padNum = k - 3 - ml;
 | |
|     for(var i = 0; i < padNum; ++i) {
 | |
|       if(eb.getByte() !== 0x00) {
 | |
|         throw new Error('Encryption block is invalid.');
 | |
|       }
 | |
|     }
 | |
|   } else if(bt === 0x01) {
 | |
|     // find the first byte that isn't 0xFF, should be after all padding
 | |
|     padNum = 0;
 | |
|     while(eb.length() > 1) {
 | |
|       if(eb.getByte() !== 0xFF) {
 | |
|         --eb.read;
 | |
|         break;
 | |
|       }
 | |
|       ++padNum;
 | |
|     }
 | |
|   } else if(bt === 0x02) {
 | |
|     // look for 0x00 byte
 | |
|     padNum = 0;
 | |
|     while(eb.length() > 1) {
 | |
|       if(eb.getByte() === 0x00) {
 | |
|         --eb.read;
 | |
|         break;
 | |
|       }
 | |
|       ++padNum;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // zero must be 0x00 and padNum must be (k - 3 - message length)
 | |
|   var zero = eb.getByte();
 | |
|   if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
 | |
|     throw new Error('Encryption block is invalid.');
 | |
|   }
 | |
| 
 | |
|   return eb.getBytes();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Runs the key-generation algorithm asynchronously, either in the background
 | |
|  * via Web Workers, or using the main thread and setImmediate.
 | |
|  *
 | |
|  * @param state the key-pair generation state.
 | |
|  * @param [options] options for key-pair generation:
 | |
|  *          workerScript the worker script URL.
 | |
|  *          workers the number of web workers (if supported) to use,
 | |
|  *            (default: 2, -1 to use estimated cores minus one).
 | |
|  *          workLoad the size of the work load, ie: number of possible prime
 | |
|  *            numbers for each web worker to check per work assignment,
 | |
|  *            (default: 100).
 | |
|  * @param callback(err, keypair) called once the operation completes.
 | |
|  */
 | |
| function _generateKeyPair(state, options, callback) {
 | |
|   if(typeof options === 'function') {
 | |
|     callback = options;
 | |
|     options = {};
 | |
|   }
 | |
|   options = options || {};
 | |
| 
 | |
|   var opts = {
 | |
|     algorithm: {
 | |
|       name: options.algorithm || 'PRIMEINC',
 | |
|       options: {
 | |
|         workers: options.workers || 2,
 | |
|         workLoad: options.workLoad || 100,
 | |
|         workerScript: options.workerScript
 | |
|       }
 | |
|     }
 | |
|   };
 | |
|   if('prng' in options) {
 | |
|     opts.prng = options.prng;
 | |
|   }
 | |
| 
 | |
|   generate();
 | |
| 
 | |
|   function generate() {
 | |
|     // find p and then q (done in series to simplify)
 | |
|     getPrime(state.pBits, function(err, num) {
 | |
|       if(err) {
 | |
|         return callback(err);
 | |
|       }
 | |
|       state.p = num;
 | |
|       if(state.q !== null) {
 | |
|         return finish(err, state.q);
 | |
|       }
 | |
|       getPrime(state.qBits, finish);
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   function getPrime(bits, callback) {
 | |
|     forge.prime.generateProbablePrime(bits, opts, callback);
 | |
|   }
 | |
| 
 | |
|   function finish(err, num) {
 | |
|     if(err) {
 | |
|       return callback(err);
 | |
|     }
 | |
| 
 | |
|     // set q
 | |
|     state.q = num;
 | |
| 
 | |
|     // ensure p is larger than q (swap them if not)
 | |
|     if(state.p.compareTo(state.q) < 0) {
 | |
|       var tmp = state.p;
 | |
|       state.p = state.q;
 | |
|       state.q = tmp;
 | |
|     }
 | |
| 
 | |
|     // ensure p is coprime with e
 | |
|     if(state.p.subtract(BigInteger.ONE).gcd(state.e)
 | |
|       .compareTo(BigInteger.ONE) !== 0) {
 | |
|       state.p = null;
 | |
|       generate();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // ensure q is coprime with e
 | |
|     if(state.q.subtract(BigInteger.ONE).gcd(state.e)
 | |
|       .compareTo(BigInteger.ONE) !== 0) {
 | |
|       state.q = null;
 | |
|       getPrime(state.qBits, finish);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // compute phi: (p - 1)(q - 1) (Euler's totient function)
 | |
|     state.p1 = state.p.subtract(BigInteger.ONE);
 | |
|     state.q1 = state.q.subtract(BigInteger.ONE);
 | |
|     state.phi = state.p1.multiply(state.q1);
 | |
| 
 | |
|     // ensure e and phi are coprime
 | |
|     if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) {
 | |
|       // phi and e aren't coprime, so generate a new p and q
 | |
|       state.p = state.q = null;
 | |
|       generate();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // create n, ensure n is has the right number of bits
 | |
|     state.n = state.p.multiply(state.q);
 | |
|     if(state.n.bitLength() !== state.bits) {
 | |
|       // failed, get new q
 | |
|       state.q = null;
 | |
|       getPrime(state.qBits, finish);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // set keys
 | |
|     var d = state.e.modInverse(state.phi);
 | |
|     state.keys = {
 | |
|       privateKey: pki.rsa.setPrivateKey(
 | |
|         state.n, state.e, d, state.p, state.q,
 | |
|         d.mod(state.p1), d.mod(state.q1),
 | |
|         state.q.modInverse(state.p)),
 | |
|       publicKey: pki.rsa.setPublicKey(state.n, state.e)
 | |
|     };
 | |
| 
 | |
|     callback(null, state.keys);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Converts a positive BigInteger into 2's-complement big-endian bytes.
 | |
|  *
 | |
|  * @param b the big integer to convert.
 | |
|  *
 | |
|  * @return the bytes.
 | |
|  */
 | |
| function _bnToBytes(b) {
 | |
|   // prepend 0x00 if first byte >= 0x80
 | |
|   var hex = b.toString(16);
 | |
|   if(hex[0] >= '8') {
 | |
|     hex = '00' + hex;
 | |
|   }
 | |
|   var bytes = forge.util.hexToBytes(hex);
 | |
| 
 | |
|   // ensure integer is minimally-encoded
 | |
|   if(bytes.length > 1 &&
 | |
|     // leading 0x00 for positive integer
 | |
|     ((bytes.charCodeAt(0) === 0 &&
 | |
|     (bytes.charCodeAt(1) & 0x80) === 0) ||
 | |
|     // leading 0xFF for negative integer
 | |
|     (bytes.charCodeAt(0) === 0xFF &&
 | |
|     (bytes.charCodeAt(1) & 0x80) === 0x80))) {
 | |
|     return bytes.substr(1);
 | |
|   }
 | |
|   return bytes;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns the required number of Miller-Rabin tests to generate a
 | |
|  * prime with an error probability of (1/2)^80.
 | |
|  *
 | |
|  * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
 | |
|  *
 | |
|  * @param bits the bit size.
 | |
|  *
 | |
|  * @return the required number of iterations.
 | |
|  */
 | |
| function _getMillerRabinTests(bits) {
 | |
|   if(bits <= 100) return 27;
 | |
|   if(bits <= 150) return 18;
 | |
|   if(bits <= 200) return 15;
 | |
|   if(bits <= 250) return 12;
 | |
|   if(bits <= 300) return 9;
 | |
|   if(bits <= 350) return 8;
 | |
|   if(bits <= 400) return 7;
 | |
|   if(bits <= 500) return 6;
 | |
|   if(bits <= 600) return 5;
 | |
|   if(bits <= 800) return 4;
 | |
|   if(bits <= 1250) return 3;
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Performs feature detection on the Node crypto interface.
 | |
|  *
 | |
|  * @param fn the feature (function) to detect.
 | |
|  *
 | |
|  * @return true if detected, false if not.
 | |
|  */
 | |
| function _detectNodeCrypto(fn) {
 | |
|   return forge.util.isNodejs && typeof _crypto[fn] === 'function';
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Performs feature detection on the SubtleCrypto interface.
 | |
|  *
 | |
|  * @param fn the feature (function) to detect.
 | |
|  *
 | |
|  * @return true if detected, false if not.
 | |
|  */
 | |
| function _detectSubtleCrypto(fn) {
 | |
|   return (typeof util.globalScope !== 'undefined' &&
 | |
|     typeof util.globalScope.crypto === 'object' &&
 | |
|     typeof util.globalScope.crypto.subtle === 'object' &&
 | |
|     typeof util.globalScope.crypto.subtle[fn] === 'function');
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Performs feature detection on the deprecated Microsoft Internet Explorer
 | |
|  * outdated SubtleCrypto interface. This function should only be used after
 | |
|  * checking for the modern, standard SubtleCrypto interface.
 | |
|  *
 | |
|  * @param fn the feature (function) to detect.
 | |
|  *
 | |
|  * @return true if detected, false if not.
 | |
|  */
 | |
| function _detectSubtleMsCrypto(fn) {
 | |
|   return (typeof util.globalScope !== 'undefined' &&
 | |
|     typeof util.globalScope.msCrypto === 'object' &&
 | |
|     typeof util.globalScope.msCrypto.subtle === 'object' &&
 | |
|     typeof util.globalScope.msCrypto.subtle[fn] === 'function');
 | |
| }
 | |
| 
 | |
| function _intToUint8Array(x) {
 | |
|   var bytes = forge.util.hexToBytes(x.toString(16));
 | |
|   var buffer = new Uint8Array(bytes.length);
 | |
|   for(var i = 0; i < bytes.length; ++i) {
 | |
|     buffer[i] = bytes.charCodeAt(i);
 | |
|   }
 | |
|   return buffer;
 | |
| }
 | |
| 
 | |
| function _privateKeyFromJwk(jwk) {
 | |
|   if(jwk.kty !== 'RSA') {
 | |
|     throw new Error(
 | |
|       'Unsupported key algorithm "' + jwk.kty + '"; algorithm must be "RSA".');
 | |
|   }
 | |
|   return pki.setRsaPrivateKey(
 | |
|     _base64ToBigInt(jwk.n),
 | |
|     _base64ToBigInt(jwk.e),
 | |
|     _base64ToBigInt(jwk.d),
 | |
|     _base64ToBigInt(jwk.p),
 | |
|     _base64ToBigInt(jwk.q),
 | |
|     _base64ToBigInt(jwk.dp),
 | |
|     _base64ToBigInt(jwk.dq),
 | |
|     _base64ToBigInt(jwk.qi));
 | |
| }
 | |
| 
 | |
| function _publicKeyFromJwk(jwk) {
 | |
|   if(jwk.kty !== 'RSA') {
 | |
|     throw new Error('Key algorithm must be "RSA".');
 | |
|   }
 | |
|   return pki.setRsaPublicKey(
 | |
|     _base64ToBigInt(jwk.n),
 | |
|     _base64ToBigInt(jwk.e));
 | |
| }
 | |
| 
 | |
| function _base64ToBigInt(b64) {
 | |
|   return new BigInteger(forge.util.bytesToHex(forge.util.decode64(b64)), 16);
 | |
| }
 |