diff --git a/models.py b/models.py new file mode 100644 index 0000000..0b29146 --- /dev/null +++ b/models.py @@ -0,0 +1,267 @@ +import torchvision.models as models +import torch +import torch.nn as nn +import torch.nn.functional as F + +class BasicBlock1D(nn.Module): + expansion = 1 + + def __init__(self, in_channels, out_channels, stride=1, downsample=None): + super(BasicBlock1D, self).__init__() + self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, + stride=stride, padding=1, bias=False) + self.bn1 = nn.BatchNorm1d(out_channels) + self.relu = nn.ReLU(inplace=True) + self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, + stride=1, padding=1, bias=False) + self.bn2 = nn.BatchNorm1d(out_channels) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + + return out + + +class Bottleneck1D(nn.Module): + expansion = 4 + + def __init__(self, in_channels, out_channels, stride=1, downsample=None): + super(Bottleneck1D, self).__init__() + self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm1d(out_channels) + self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=stride, + padding=1, bias=False) + self.bn2 = nn.BatchNorm1d(out_channels) + self.conv3 = nn.Conv1d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm1d(out_channels * self.expansion) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + + return out + + +class AudioResNet(nn.Module): + def __init__(self, block, layers, num_classes=7): + """ + 构建用于音频分类的1D ResNet + + 参数: + block: 使用的残差块类型(BasicBlock1D or Bottleneck1D) + layers: 每个层的块数量的列表 + num_classes: 分类的类别数量,默认为7种情感 + """ + super(AudioResNet, self).__init__() + self.in_channels = 64 + + # 初始卷积层,缩减序列长度 + self.conv1 = nn.Conv1d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) + self.bn1 = nn.BatchNorm1d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) + + # 残差块堆叠 + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + + # 全局平均池化和分类器 + self.avgpool = nn.AdaptiveAvgPool1d(1) + self.fc = nn.Linear(512 * block.expansion, num_classes) + + # 权重初始化 + for m in self.modules(): + if isinstance(m, nn.Conv1d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm1d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + def _make_layer(self, block, out_channels, blocks, stride=1): + downsample = None + if stride != 1 or self.in_channels != out_channels * block.expansion: + downsample = nn.Sequential( + nn.Conv1d(self.in_channels, out_channels * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm1d(out_channels * block.expansion), + ) + + layers = [] + layers.append(block(self.in_channels, out_channels, stride, downsample)) + self.in_channels = out_channels * block.expansion + for _ in range(1, blocks): + layers.append(block(self.in_channels, out_channels)) + + return nn.Sequential(*layers) + + def forward(self, x): + # 输入 x 形状: [batch_size, 1, 24000] + + x = self.conv1(x) # [batch_size, 64, 12000] + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) # [batch_size, 64, 6000] + + x = self.layer1(x) # [batch_size, 64*expansion, 6000] + x = self.layer2(x) # [batch_size, 128*expansion, 3000] + x = self.layer3(x) # [batch_size, 256*expansion, 1500] + x = self.layer4(x) # [batch_size, 512*expansion, 750] + + x = self.avgpool(x) # [batch_size, 512*expansion, 1] + x = torch.flatten(x, 1) # [batch_size, 512*expansion] + x = self.fc(x) # [batch_size, num_classes] + + return x + + +# 定义不同规模的ResNet模型 +def waveform_resnet18(num_classes=7): + """ + 构建类似ResNet18的音频分类模型 + """ + return AudioResNet(BasicBlock1D, [2, 2, 2, 2], num_classes) + +def waveform_resnet34(num_classes=7): + """ + 构建类似ResNet34的音频分类模型 + """ + return AudioResNet(BasicBlock1D, [3, 4, 6, 3], num_classes) + +def waveform_resnet50(num_classes=7): + """ + 构建类似ResNet50的音频分类模型 + """ + return AudioResNet(Bottleneck1D, [3, 4, 6, 3], num_classes) + +def waveform_resnet101(num_classes=7): + """ + 构建类似ResNet101的音频分类模型 + """ + return AudioResNet(Bottleneck1D, [3, 4, 23, 3], num_classes) + + +class SpectrogramResNet(nn.Module): + """ + 使用预训练的ResNet模型对音频频谱图进行情感分类 + """ + def __init__(self, model_name='resnet18', num_classes=6, pretrained=True): + """ + 初始化频谱图ResNet分类模型 + + 参数: + model_name: 使用的ResNet版本 ('resnet18', 'resnet34', 'resnet50', 'resnet101') + num_classes: 情感类别数量 + pretrained: 是否使用预训练权重 + """ + super(SpectrogramResNet, self).__init__() + + # 选择预训练的ResNet模型 + if model_name == 'resnet18': + base_model = models.resnet18(pretrained=pretrained) + elif model_name == 'resnet34': + base_model = models.resnet34(pretrained=pretrained) + elif model_name == 'resnet50': + base_model = models.resnet50(pretrained=pretrained) + elif model_name == 'resnet101': + base_model = models.resnet101(pretrained=pretrained) + else: + raise ValueError(f"不支持的模型名称: {model_name}") + + # 修改第一个卷积层以接受单通道输入 + self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) + + # 使用预训练权重初始化第一层(如果可用) + if pretrained: + # 将预训练的三通道权重平均为单通道权重 + with torch.no_grad(): + self.conv1.weight.data = base_model.conv1.weight.data.mean(dim=1, keepdim=True) + + # 使用其余的预训练层 + self.bn1 = base_model.bn1 + self.relu = base_model.relu + self.maxpool = base_model.maxpool + self.layer1 = base_model.layer1 + self.layer2 = base_model.layer2 + self.layer3 = base_model.layer3 + self.layer4 = base_model.layer4 + self.avgpool = base_model.avgpool + + # 修改全连接层以匹配目标类别数 + in_features = base_model.fc.in_features + self.fc = nn.Linear(in_features, num_classes) + + def forward(self, x): + """ + 前向传播 + + 参数: + x: 形状为 [batch_size, 1, 128, 128] 的频谱图 + + 返回: + 形状为 [batch_size, num_classes] 的类别预测 + """ + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = torch.flatten(x, 1) + x = self.fc(x) + + return x + +# 便捷函数用于创建不同版本的模型 +def spectrogram_resnet18(num_classes=6, pretrained=True): + return SpectrogramResNet('resnet18', num_classes, pretrained) + +def spectrogram_resnet34(num_classes=6, pretrained=True): + return SpectrogramResNet('resnet34', num_classes, pretrained) + +def spectrogram_resnet50(num_classes=6, pretrained=True): + return SpectrogramResNet('resnet50', num_classes, pretrained) + +def spectrogram_resnet101(num_classes=6, pretrained=True): + return SpectrogramResNet('resnet101', num_classes, pretrained) +