diff --git a/model.py b/model.py new file mode 100644 index 0000000..bcf4fa8 --- /dev/null +++ b/model.py @@ -0,0 +1,110 @@ +import pandas as pd +from sklearn.linear_model import LogisticRegression +from sklearn.svm import SVC +from sklearn.neural_network import MLPClassifier +from sklearn.discriminant_analysis import LinearDiscriminantAnalysis +from sklearn.naive_bayes import GaussianNB +from sklearn.neighbors import KNeighborsClassifier +from sklearn.tree import DecisionTreeClassifier +from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier +from sklearn.model_selection import train_test_split +from sklearn.preprocessing import MinMaxScaler +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score + +# Load Data +data = pd.read_csv('dataset.csv', index_col=0) +# 去掉非数字特征和直接前驱特征 +X = data.loc[:, 'prs': 'sig_cluster'].drop(labels=['last_contribute_to_now', 'user_login_pr'], axis=1) +print(X) + +X = MinMaxScaler().fit_transform(X.values) +y = data['tag'].values +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1) + +# Results initialize +results = pd.DataFrame(columns=['Acc', 'Pre', 'Rec', 'F1'], + index=['LR', 'SVM', 'LDA', 'NB', 'KNN', 'NN', 'DT', 'RF', 'GBT']) +print(results) + +# Logistic Regression +clf = LogisticRegression(random_state=0).fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['LR', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['LR', 'Pre'] = precision_score(y_test, y_pred) +results.loc['LR', 'Rec'] = recall_score(y_test, y_pred) +results.loc['LR', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['LR']) + +# SVM +clf = SVC(random_state=0).fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['SVM', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['SVM', 'Pre'] = precision_score(y_test, y_pred) +results.loc['SVM', 'Rec'] = recall_score(y_test, y_pred) +results.loc['SVM', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['SVM']) + +# NN +clf = MLPClassifier(random_state=0, max_iter=10000).fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['NN', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['NN', 'Pre'] = precision_score(y_test, y_pred) +results.loc['NN', 'Rec'] = recall_score(y_test, y_pred) +results.loc['NN', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['NN']) + +# LDA +clf = LinearDiscriminantAnalysis().fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['LDA', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['LDA', 'Pre'] = precision_score(y_test, y_pred) +results.loc['LDA', 'Rec'] = recall_score(y_test, y_pred) +results.loc['LDA', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['LDA']) + +# NB +clf = GaussianNB().fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['NB', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['NB', 'Pre'] = precision_score(y_test, y_pred) +results.loc['NB', 'Rec'] = recall_score(y_test, y_pred) +results.loc['NB', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['NB']) + +# KNN +clf = KNeighborsClassifier().fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['KNN', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['KNN', 'Pre'] = precision_score(y_test, y_pred) +results.loc['KNN', 'Rec'] = recall_score(y_test, y_pred) +results.loc['KNN', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['KNN']) + +# DT +clf = DecisionTreeClassifier().fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['DT', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['DT', 'Pre'] = precision_score(y_test, y_pred) +results.loc['DT', 'Rec'] = recall_score(y_test, y_pred) +results.loc['DT', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['DT']) + +# RF +clf = RandomForestClassifier().fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['RF', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['RF', 'Pre'] = precision_score(y_test, y_pred) +results.loc['RF', 'Rec'] = recall_score(y_test, y_pred) +results.loc['RF', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['RF']) + +# GBT +clf = GradientBoostingClassifier().fit(X_train, y_train) +y_pred = clf.predict(X_test) +results.loc['GBT', 'Acc'] = accuracy_score(y_test, y_pred) +results.loc['GBT', 'Pre'] = precision_score(y_test, y_pred) +results.loc['GBT', 'Rec'] = recall_score(y_test, y_pred) +results.loc['GBT', 'F1'] = f1_score(y_test, y_pred) +print(results.loc['GBT']) + +print(results)