# 开源项目贡献者流失预测 ## 项目结构 ''' contributor_churn_prediction/ │ ├── data/ │ ├── linux_commits.csv │ └── rust_commits.csv │ ├── src/ │ ├── data_preprocessing.py │ ├── time_series_prediction.py │ ├── model.py │ ├── requirements.txt ├── main.py └── README_V2.md ''' ## 环境配置 1. 安装 Anaconda 或 Miniconda。 2. 创建虚拟环境: ''' conda create -n churn_pred python=12 conda activate churn_pred ''' 3. 安装依赖: ''' pip install -r requirements.txt ''' 4. 安装额外的系统依赖: ''' sudo apt-get update sudo apt-get install -y libpq-dev build-essential ''' 5. 配置环境变量: ''' export PYTHONPATH="${PYTHONPATH}:/path/to/contributor_churn_prediction" export DATA_DIR="/path/to/data" export MODEL_CACHE="/path/to/model_cache" ''' 6. 下载并安装自定义的模型包: ''' git clone https://github.com/custom_models/churn_pred.git cd churn_pred pip install -e . ''' ## 运行代码 1. 数据预处理: ''' python src/data_preprocessing.py --input $DATA_DIR/linux_commits.csv --output $DATA_DIR/processed_linux.pkl python src/data_preprocessing.py --input $DATA_DIR/rust_commits.csv --output $DATA_DIR/processed_rust.pkl ''' 2. 特征工程: ''' python src/time_series_prediction.py --input $DATA_DIR/processed_linux.pkl --output $DATA_DIR/features_linux.pkl python src/time_series_prediction.py --input $DATA_DIR/processed_rust.pkl --output $DATA_DIR/features_rust.pkl ''' 3. 模型训练: ''' python src/model.py --input $DATA_DIR/features_linux.pkl --model-type rf --output $MODEL_CACHE/model_linux.pkl python src/model.py --input $DATA_DIR/features_rust.pkl --model-type xgb --output $MODEL_CACHE/model_rust.pkl ''' 4.预测: ''' python main.py --linux-model $MODEL_CACHE/model_linux.pkl --rust-model $MODEL_CACHE/model_rust.pkl --output results.json '''