import argparse import json import os from datetime import timedelta,datetime import pandas as pd from prophet import Prophet from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score import joblib from src.data_preprocessing import load_data, preprocess_data, split_data from src.time_series_prediction import extract_features, label_churners # 数据预处理 # 从 JSON 文件中加载数据 with open('commits_data_large.json', 'r') as f: commits = json.load(f) # 将数据转换为 DataFrame df = pd.DataFrame(commits) # 1.处理缺失值 df = df.dropna() # 2. 转换日期时间格式 df['author_date'] = pd.to_datetime(df['author_date']) #时间序列预测 def time_series_predict(time_series_data): time_series = Prophet(seasonality_mode='multiplicative').fit(time_series_data) future = time_series.make_future_dataframe() future_time_series_data = time_series.predict(future) return future_time_series_data def time_series_prediction(time_series_data): return time_series_data # 特征工程 # 1. 提取时间相关特征 df['year'] = df['author_date'].dt.year df['month'] = df['author_date'].dt.month df['day'] = df['author_date'].dt.day df['day_of_week'] = df['author_date'].dt.dayofweek df['hour'] = df['author_date'].dt.hour # 2. 计算开发者提交频率 commit_counts = df.groupby('author_email').size().reset_index(name='commit_count') # 3. 计算开发者的活跃周期 df['first_commit_date'] = df.groupby('author_email')['author_date'].transform('min') df['last_commit_date'] = df.groupby('author_email')['author_date'].transform('max') df['active_days'] = (df['last_commit_date'] - df['first_commit_date']).dt.days # 4. 合并特征 df_features = pd.merge(commit_counts, avg_interval, on='author_email') df_features = pd.merge(df_features, df[['author_email', 'active_days']].drop_duplicates(), on='author_email') output_path = 'Dataset.csv' df_features.to_csv(output_path, index=False) print("数据预处理完成。") # 模型训练 # Load Data data = pd.read_csv('dataset.csv', index_col=0) # 去掉非数字特征和直接前驱特征 X = data.loc[:, 'prs': 'sig_cluster'].drop(labels=['last_contribute_to_now', 'user_login_pr'], axis=1) print(X) X = MinMaxScaler().fit_transform(X.values) y = data['tag'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1) # Results initialize results = pd.DataFrame(columns=['Acc', 'Pre', 'Rec', 'F1'], index=['LR', 'SVM', 'LDA', 'NB', 'KNN', 'NN', 'DT', 'RF', 'GBT']) print(results) # Logistic Regression clf = LogisticRegression(random_state=0).fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['LR', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['LR', 'Pre'] = precision_score(y_test, y_pred) results.loc['LR', 'Rec'] = recall_score(y_test, y_pred) results.loc['LR', 'F1'] = f1_score(y_test, y_pred) print(results.loc['LR']) # SVM clf = SVC(random_state=0).fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['SVM', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['SVM', 'Pre'] = precision_score(y_test, y_pred) results.loc['SVM', 'Rec'] = recall_score(y_test, y_pred) results.loc['SVM', 'F1'] = f1_score(y_test, y_pred) print(results.loc['SVM']) # NN clf = MLPClassifier(random_state=0, max_iter=10000).fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['NN', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['NN', 'Pre'] = precision_score(y_test, y_pred) results.loc['NN', 'Rec'] = recall_score(y_test, y_pred) results.loc['NN', 'F1'] = f1_score(y_test, y_pred) print(results.loc['NN']) # LDA clf = LinearDiscriminantAnalysis().fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['LDA', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['LDA', 'Pre'] = precision_score(y_test, y_pred) results.loc['LDA', 'Rec'] = recall_score(y_test, y_pred) results.loc['LDA', 'F1'] = f1_score(y_test, y_pred) print(results.loc['LDA']) # NB clf = GaussianNB().fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['NB', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['NB', 'Pre'] = precision_score(y_test, y_pred) results.loc['NB', 'Rec'] = recall_score(y_test, y_pred) results.loc['NB', 'F1'] = f1_score(y_test, y_pred) print(results.loc['NB']) # KNN clf = KNeighborsClassifier().fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['KNN', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['KNN', 'Pre'] = precision_score(y_test, y_pred) results.loc['KNN', 'Rec'] = recall_score(y_test, y_pred) results.loc['KNN', 'F1'] = f1_score(y_test, y_pred) print(results.loc['KNN']) # DT clf = DecisionTreeClassifier().fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['DT', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['DT', 'Pre'] = precision_score(y_test, y_pred) results.loc['DT', 'Rec'] = recall_score(y_test, y_pred) results.loc['DT', 'F1'] = f1_score(y_test, y_pred) print(results.loc['DT']) # RF clf = RandomForestClassifier().fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['RF', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['RF', 'Pre'] = precision_score(y_test, y_pred) results.loc['RF', 'Rec'] = recall_score(y_test, y_pred) results.loc['RF', 'F1'] = f1_score(y_test, y_pred) print(results.loc['RF']) # GBT clf = GradientBoostingClassifier().fit(X_train, y_train) y_pred = clf.predict(X_test) results.loc['GBT', 'Acc'] = accuracy_score(y_test, y_pred) results.loc['GBT', 'Pre'] = precision_score(y_test, y_pred) results.loc['GBT', 'Rec'] = recall_score(y_test, y_pred) results.loc['GBT', 'F1'] = f1_score(y_test, y_pred) print(results.loc['GBT']) print(results)