代码提供

main
XinqiQin 3 days ago
parent 52f8f5e3c6
commit 903d8c0e46

@ -0,0 +1,65 @@
# Details
Date : 2025-07-13 22:39:37
Directory d:\\codes\\YOLOv8face1
Total : 50 files, 1044944 codes, 269 comments, 6297 blanks, all 1051510 lines
[Summary](results.md) / Details / [Diff Summary](diff.md) / [Diff Details](diff-details.md)
## Files
| filename | language | code | comment | blank | total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| [.idea/YOLOv8face.iml](/.idea/YOLOv8face.iml) | XML | 12 | 0 | 0 | 12 |
| [.idea/inspectionProfiles/Project\_Default.xml](/.idea/inspectionProfiles/Project_Default.xml) | XML | 20 | 0 | 0 | 20 |
| [.idea/inspectionProfiles/profiles\_settings.xml](/.idea/inspectionProfiles/profiles_settings.xml) | XML | 6 | 0 | 0 | 6 |
| [.idea/misc.xml](/.idea/misc.xml) | XML | 4 | 0 | 0 | 4 |
| [.idea/modules.xml](/.idea/modules.xml) | XML | 8 | 0 | 0 | 8 |
| [CITATION.cff](/CITATION.cff) | YAML | 19 | 1 | 1 | 21 |
| [CameraTest.py](/CameraTest.py) | Python | 25 | 12 | 9 | 46 |
| [Config.py](/Config.py) | Python | 4 | 3 | 3 | 10 |
| [MainProgram.py](/MainProgram.py) | Python | 442 | 99 | 84 | 625 |
| [UIProgram/QssLoader.py](/UIProgram/QssLoader.py) | Python | 7 | 0 | 1 | 8 |
| [UIProgram/UiMain.py](/UIProgram/UiMain.py) | Python | 505 | 7 | 8 | 520 |
| [UIProgram/\_\_init\_\_.py](/UIProgram/__init__.py) | Python | 0 | 0 | 1 | 1 |
| [UIProgram/precess\_bar.py](/UIProgram/precess_bar.py) | Python | 32 | 3 | 12 | 47 |
| [UIProgram/style.css](/UIProgram/style.css) | PostCSS | 12 | 0 | 4 | 16 |
| [UIProgram/ui\_sources.py](/UIProgram/ui_sources.py) | Python | 0 | 7 | 4 | 11 |
| [UIProgram/ui\_sources\_rc.py](/UIProgram/ui_sources_rc.py) | Python | 33,449 | 6 | 11 | 33,466 |
| [VideoTest.py](/VideoTest.py) | Python | 18 | 12 | 7 | 37 |
| [datasets/count\_size.py](/datasets/count_size.py) | Python | 79 | 32 | 19 | 130 |
| [datasets/faceData/data.yaml](/datasets/faceData/data.yaml) | YAML | 5 | 2 | 4 | 11 |
| [datasets/micai/data.yaml](/datasets/micai/data.yaml) | YAML | 5 | 0 | 3 | 8 |
| [detect\_tools.py](/detect_tools.py) | Python | 132 | 55 | 36 | 223 |
| [imgTest.py](/imgTest.py) | Python | 9 | 8 | 4 | 21 |
| [installPackages.py](/installPackages.py) | Python | 5 | 0 | 3 | 8 |
| [main.py](/main.py) | Python | 5 | 0 | 0 | 5 |
| [models/best.pt](/models/best.pt) | XML | 35,549 | 0 | 123 | 35,672 |
| [requirements.txt](/requirements.txt) | pip requirements | 30 | 1 | 0 | 31 |
| [runs/detect/train10/args.yaml](/runs/detect/train10/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train11/args.yaml](/runs/detect/train11/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train11/weights/best.pt](/runs/detect/train11/weights/best.pt) | XML | 32,298 | 0 | 82 | 32,380 |
| [runs/detect/train11/weights/last.pt](/runs/detect/train11/weights/last.pt) | XML | 32,298 | 0 | 82 | 32,380 |
| [runs/detect/train2/args.yaml](/runs/detect/train2/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train3/args.yaml](/runs/detect/train3/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train4/args.yaml](/runs/detect/train4/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train5/args.yaml](/runs/detect/train5/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train6/args.yaml](/runs/detect/train6/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train6/weights/best.pt](/runs/detect/train6/weights/best.pt) | XML | 29,917 | 0 | 49 | 29,966 |
| [runs/detect/train6/weights/last.pt](/runs/detect/train6/weights/last.pt) | XML | 30,047 | 0 | 50 | 30,097 |
| [runs/detect/train7/args.yaml](/runs/detect/train7/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train8/args.yaml](/runs/detect/train8/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train9/args.yaml](/runs/detect/train9/args.yaml) | YAML | 105 | 0 | 1 | 106 |
| [runs/detect/train/args.yaml](/runs/detect/train/args.yaml) | YAML | 98 | 0 | 1 | 99 |
| [runs/detect/train/weights/best.pt](/runs/detect/train/weights/best.pt) | XML | 35,549 | 0 | 123 | 35,672 |
| [runs/detect/train/weights/last.pt](/runs/detect/train/weights/last.pt) | XML | 35,408 | 0 | 102 | 35,510 |
| [setup.py](/setup.py) | Python | 77 | 17 | 12 | 106 |
| [test\_CUDA.py](/test_CUDA.py) | Python | 7 | 0 | 1 | 8 |
| [train.py](/train.py) | Python | 16 | 4 | 3 | 23 |
| [yolo11n.pt](/yolo11n.pt) | XML | 35,992 | 0 | 174 | 36,166 |
| [yolov8m.pt](/yolov8m.pt) | XML | 520,050 | 0 | 4,022 | 524,072 |
| [yolov8n.pt](/yolov8n.pt) | XML | 43,044 | 0 | 229 | 43,273 |
| [yolov8s.pt](/yolov8s.pt) | XML | 178,711 | 0 | 1,020 | 179,731 |
[Summary](results.md) / Details / [Diff Summary](diff.md) / [Diff Details](diff-details.md)

@ -0,0 +1,15 @@
# Diff Details
Date : 2025-07-13 22:39:37
Directory d:\\codes\\YOLOv8face1
Total : 0 files, 0 codes, 0 comments, 0 blanks, all 0 lines
[Summary](results.md) / [Details](details.md) / [Diff Summary](diff.md) / Diff Details
## Files
| filename | language | code | comment | blank | total |
| :--- | :--- | ---: | ---: | ---: | ---: |
[Summary](results.md) / [Details](details.md) / [Diff Summary](diff.md) / Diff Details

@ -0,0 +1,2 @@
"filename", "language", "", "comment", "blank", "total"
"Total", "-", , 0, 0, 0
1 filename language comment blank total
2 Total - 0 0 0

@ -0,0 +1,19 @@
# Diff Summary
Date : 2025-07-13 22:39:37
Directory d:\\codes\\YOLOv8face1
Total : 0 files, 0 codes, 0 comments, 0 blanks, all 0 lines
[Summary](results.md) / [Details](details.md) / Diff Summary / [Diff Details](diff-details.md)
## Languages
| language | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
## Directories
| path | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
[Summary](results.md) / [Details](details.md) / Diff Summary / [Diff Details](diff-details.md)

@ -0,0 +1,22 @@
Date : 2025-07-13 22:39:37
Directory : d:\codes\YOLOv8face1
Total : 0 files, 0 codes, 0 comments, 0 blanks, all 0 lines
Languages
+----------+------------+------------+------------+------------+------------+
| language | files | code | comment | blank | total |
+----------+------------+------------+------------+------------+------------+
+----------+------------+------------+------------+------------+------------+
Directories
+------+------------+------------+------------+------------+------------+
| path | files | code | comment | blank | total |
+------+------------+------------+------------+------------+------------+
+------+------------+------------+------------+------------+------------+
Files
+----------+----------+------------+------------+------------+------------+
| filename | language | code | comment | blank | total |
+----------+----------+------------+------------+------------+------------+
| Total | | 0 | 0 | 0 | 0 |
+----------+----------+------------+------------+------------+------------+

@ -0,0 +1,52 @@
"filename", "language", "Python", "PostCSS", "pip requirements", "YAML", "XML", "comment", "blank", "total"
"d:\codes\YOLOv8face1\.idea\YOLOv8face.iml", "XML", 0, 0, 0, 0, 12, 0, 0, 12
"d:\codes\YOLOv8face1\.idea\inspectionProfiles\Project_Default.xml", "XML", 0, 0, 0, 0, 20, 0, 0, 20
"d:\codes\YOLOv8face1\.idea\inspectionProfiles\profiles_settings.xml", "XML", 0, 0, 0, 0, 6, 0, 0, 6
"d:\codes\YOLOv8face1\.idea\misc.xml", "XML", 0, 0, 0, 0, 4, 0, 0, 4
"d:\codes\YOLOv8face1\.idea\modules.xml", "XML", 0, 0, 0, 0, 8, 0, 0, 8
"d:\codes\YOLOv8face1\CITATION.cff", "YAML", 0, 0, 0, 19, 0, 1, 1, 21
"d:\codes\YOLOv8face1\CameraTest.py", "Python", 25, 0, 0, 0, 0, 12, 9, 46
"d:\codes\YOLOv8face1\Config.py", "Python", 4, 0, 0, 0, 0, 3, 3, 10
"d:\codes\YOLOv8face1\MainProgram.py", "Python", 442, 0, 0, 0, 0, 99, 84, 625
"d:\codes\YOLOv8face1\UIProgram\QssLoader.py", "Python", 7, 0, 0, 0, 0, 0, 1, 8
"d:\codes\YOLOv8face1\UIProgram\UiMain.py", "Python", 505, 0, 0, 0, 0, 7, 8, 520
"d:\codes\YOLOv8face1\UIProgram\__init__.py", "Python", 0, 0, 0, 0, 0, 0, 1, 1
"d:\codes\YOLOv8face1\UIProgram\precess_bar.py", "Python", 32, 0, 0, 0, 0, 3, 12, 47
"d:\codes\YOLOv8face1\UIProgram\style.css", "PostCSS", 0, 12, 0, 0, 0, 0, 4, 16
"d:\codes\YOLOv8face1\UIProgram\ui_sources.py", "Python", 0, 0, 0, 0, 0, 7, 4, 11
"d:\codes\YOLOv8face1\UIProgram\ui_sources_rc.py", "Python", 33449, 0, 0, 0, 0, 6, 11, 33466
"d:\codes\YOLOv8face1\VideoTest.py", "Python", 18, 0, 0, 0, 0, 12, 7, 37
"d:\codes\YOLOv8face1\datasets\count_size.py", "Python", 79, 0, 0, 0, 0, 32, 19, 130
"d:\codes\YOLOv8face1\datasets\faceData\data.yaml", "YAML", 0, 0, 0, 5, 0, 2, 4, 11
"d:\codes\YOLOv8face1\datasets\micai\data.yaml", "YAML", 0, 0, 0, 5, 0, 0, 3, 8
"d:\codes\YOLOv8face1\detect_tools.py", "Python", 132, 0, 0, 0, 0, 55, 36, 223
"d:\codes\YOLOv8face1\imgTest.py", "Python", 9, 0, 0, 0, 0, 8, 4, 21
"d:\codes\YOLOv8face1\installPackages.py", "Python", 5, 0, 0, 0, 0, 0, 3, 8
"d:\codes\YOLOv8face1\main.py", "Python", 5, 0, 0, 0, 0, 0, 0, 5
"d:\codes\YOLOv8face1\models\best.pt", "XML", 0, 0, 0, 0, 35549, 0, 123, 35672
"d:\codes\YOLOv8face1\requirements.txt", "pip requirements", 0, 0, 30, 0, 0, 1, 0, 31
"d:\codes\YOLOv8face1\runs\detect\train10\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train11\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train11\weights\best.pt", "XML", 0, 0, 0, 0, 32298, 0, 82, 32380
"d:\codes\YOLOv8face1\runs\detect\train11\weights\last.pt", "XML", 0, 0, 0, 0, 32298, 0, 82, 32380
"d:\codes\YOLOv8face1\runs\detect\train2\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train3\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train4\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train5\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train6\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train6\weights\best.pt", "XML", 0, 0, 0, 0, 29917, 0, 49, 29966
"d:\codes\YOLOv8face1\runs\detect\train6\weights\last.pt", "XML", 0, 0, 0, 0, 30047, 0, 50, 30097
"d:\codes\YOLOv8face1\runs\detect\train7\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train8\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train9\args.yaml", "YAML", 0, 0, 0, 105, 0, 0, 1, 106
"d:\codes\YOLOv8face1\runs\detect\train\args.yaml", "YAML", 0, 0, 0, 98, 0, 0, 1, 99
"d:\codes\YOLOv8face1\runs\detect\train\weights\best.pt", "XML", 0, 0, 0, 0, 35549, 0, 123, 35672
"d:\codes\YOLOv8face1\runs\detect\train\weights\last.pt", "XML", 0, 0, 0, 0, 35408, 0, 102, 35510
"d:\codes\YOLOv8face1\setup.py", "Python", 77, 0, 0, 0, 0, 17, 12, 106
"d:\codes\YOLOv8face1\test_CUDA.py", "Python", 7, 0, 0, 0, 0, 0, 1, 8
"d:\codes\YOLOv8face1\train.py", "Python", 16, 0, 0, 0, 0, 4, 3, 23
"d:\codes\YOLOv8face1\yolo11n.pt", "XML", 0, 0, 0, 0, 35992, 0, 174, 36166
"d:\codes\YOLOv8face1\yolov8m.pt", "XML", 0, 0, 0, 0, 520050, 0, 4022, 524072
"d:\codes\YOLOv8face1\yolov8n.pt", "XML", 0, 0, 0, 0, 43044, 0, 229, 43273
"d:\codes\YOLOv8face1\yolov8s.pt", "XML", 0, 0, 0, 0, 178711, 0, 1020, 179731
"Total", "-", 34812, 12, 30, 1177, 1008913, 269, 6297, 1051510
1 filename language Python PostCSS pip requirements YAML XML comment blank total
2 d:\codes\YOLOv8face1\.idea\YOLOv8face.iml XML 0 0 0 0 12 0 0 12
3 d:\codes\YOLOv8face1\.idea\inspectionProfiles\Project_Default.xml XML 0 0 0 0 20 0 0 20
4 d:\codes\YOLOv8face1\.idea\inspectionProfiles\profiles_settings.xml XML 0 0 0 0 6 0 0 6
5 d:\codes\YOLOv8face1\.idea\misc.xml XML 0 0 0 0 4 0 0 4
6 d:\codes\YOLOv8face1\.idea\modules.xml XML 0 0 0 0 8 0 0 8
7 d:\codes\YOLOv8face1\CITATION.cff YAML 0 0 0 19 0 1 1 21
8 d:\codes\YOLOv8face1\CameraTest.py Python 25 0 0 0 0 12 9 46
9 d:\codes\YOLOv8face1\Config.py Python 4 0 0 0 0 3 3 10
10 d:\codes\YOLOv8face1\MainProgram.py Python 442 0 0 0 0 99 84 625
11 d:\codes\YOLOv8face1\UIProgram\QssLoader.py Python 7 0 0 0 0 0 1 8
12 d:\codes\YOLOv8face1\UIProgram\UiMain.py Python 505 0 0 0 0 7 8 520
13 d:\codes\YOLOv8face1\UIProgram\__init__.py Python 0 0 0 0 0 0 1 1
14 d:\codes\YOLOv8face1\UIProgram\precess_bar.py Python 32 0 0 0 0 3 12 47
15 d:\codes\YOLOv8face1\UIProgram\style.css PostCSS 0 12 0 0 0 0 4 16
16 d:\codes\YOLOv8face1\UIProgram\ui_sources.py Python 0 0 0 0 0 7 4 11
17 d:\codes\YOLOv8face1\UIProgram\ui_sources_rc.py Python 33449 0 0 0 0 6 11 33466
18 d:\codes\YOLOv8face1\VideoTest.py Python 18 0 0 0 0 12 7 37
19 d:\codes\YOLOv8face1\datasets\count_size.py Python 79 0 0 0 0 32 19 130
20 d:\codes\YOLOv8face1\datasets\faceData\data.yaml YAML 0 0 0 5 0 2 4 11
21 d:\codes\YOLOv8face1\datasets\micai\data.yaml YAML 0 0 0 5 0 0 3 8
22 d:\codes\YOLOv8face1\detect_tools.py Python 132 0 0 0 0 55 36 223
23 d:\codes\YOLOv8face1\imgTest.py Python 9 0 0 0 0 8 4 21
24 d:\codes\YOLOv8face1\installPackages.py Python 5 0 0 0 0 0 3 8
25 d:\codes\YOLOv8face1\main.py Python 5 0 0 0 0 0 0 5
26 d:\codes\YOLOv8face1\models\best.pt XML 0 0 0 0 35549 0 123 35672
27 d:\codes\YOLOv8face1\requirements.txt pip requirements 0 0 30 0 0 1 0 31
28 d:\codes\YOLOv8face1\runs\detect\train10\args.yaml YAML 0 0 0 105 0 0 1 106
29 d:\codes\YOLOv8face1\runs\detect\train11\args.yaml YAML 0 0 0 105 0 0 1 106
30 d:\codes\YOLOv8face1\runs\detect\train11\weights\best.pt XML 0 0 0 0 32298 0 82 32380
31 d:\codes\YOLOv8face1\runs\detect\train11\weights\last.pt XML 0 0 0 0 32298 0 82 32380
32 d:\codes\YOLOv8face1\runs\detect\train2\args.yaml YAML 0 0 0 105 0 0 1 106
33 d:\codes\YOLOv8face1\runs\detect\train3\args.yaml YAML 0 0 0 105 0 0 1 106
34 d:\codes\YOLOv8face1\runs\detect\train4\args.yaml YAML 0 0 0 105 0 0 1 106
35 d:\codes\YOLOv8face1\runs\detect\train5\args.yaml YAML 0 0 0 105 0 0 1 106
36 d:\codes\YOLOv8face1\runs\detect\train6\args.yaml YAML 0 0 0 105 0 0 1 106
37 d:\codes\YOLOv8face1\runs\detect\train6\weights\best.pt XML 0 0 0 0 29917 0 49 29966
38 d:\codes\YOLOv8face1\runs\detect\train6\weights\last.pt XML 0 0 0 0 30047 0 50 30097
39 d:\codes\YOLOv8face1\runs\detect\train7\args.yaml YAML 0 0 0 105 0 0 1 106
40 d:\codes\YOLOv8face1\runs\detect\train8\args.yaml YAML 0 0 0 105 0 0 1 106
41 d:\codes\YOLOv8face1\runs\detect\train9\args.yaml YAML 0 0 0 105 0 0 1 106
42 d:\codes\YOLOv8face1\runs\detect\train\args.yaml YAML 0 0 0 98 0 0 1 99
43 d:\codes\YOLOv8face1\runs\detect\train\weights\best.pt XML 0 0 0 0 35549 0 123 35672
44 d:\codes\YOLOv8face1\runs\detect\train\weights\last.pt XML 0 0 0 0 35408 0 102 35510
45 d:\codes\YOLOv8face1\setup.py Python 77 0 0 0 0 17 12 106
46 d:\codes\YOLOv8face1\test_CUDA.py Python 7 0 0 0 0 0 1 8
47 d:\codes\YOLOv8face1\train.py Python 16 0 0 0 0 4 3 23
48 d:\codes\YOLOv8face1\yolo11n.pt XML 0 0 0 0 35992 0 174 36166
49 d:\codes\YOLOv8face1\yolov8m.pt XML 0 0 0 0 520050 0 4022 524072
50 d:\codes\YOLOv8face1\yolov8n.pt XML 0 0 0 0 43044 0 229 43273
51 d:\codes\YOLOv8face1\yolov8s.pt XML 0 0 0 0 178711 0 1020 179731
52 Total - 34812 12 30 1177 1008913 269 6297 1051510

File diff suppressed because one or more lines are too long

@ -0,0 +1,54 @@
# Summary
Date : 2025-07-13 22:39:37
Directory d:\\codes\\YOLOv8face1
Total : 50 files, 1044944 codes, 269 comments, 6297 blanks, all 1051510 lines
Summary / [Details](details.md) / [Diff Summary](diff.md) / [Diff Details](diff-details.md)
## Languages
| language | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| XML | 16 | 1,008,913 | 0 | 6,056 | 1,014,969 |
| Python | 18 | 34,812 | 265 | 218 | 35,295 |
| YAML | 14 | 1,177 | 3 | 19 | 1,199 |
| pip requirements | 1 | 30 | 1 | 0 | 31 |
| PostCSS | 1 | 12 | 0 | 4 | 16 |
## Directories
| path | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| . | 50 | 1,044,944 | 269 | 6,297 | 1,051,510 |
| . (Files) | 17 | 778,586 | 212 | 5,608 | 784,406 |
| .idea | 5 | 50 | 0 | 0 | 50 |
| .idea (Files) | 3 | 24 | 0 | 0 | 24 |
| .idea\\inspectionProfiles | 2 | 26 | 0 | 0 | 26 |
| UIProgram | 7 | 34,005 | 23 | 41 | 34,069 |
| datasets | 3 | 89 | 34 | 26 | 149 |
| datasets (Files) | 1 | 79 | 32 | 19 | 130 |
| datasets\\faceData | 1 | 5 | 2 | 4 | 11 |
| datasets\\micai | 1 | 5 | 0 | 3 | 8 |
| models | 1 | 35,549 | 0 | 123 | 35,672 |
| runs | 17 | 196,665 | 0 | 499 | 197,164 |
| runs\\detect | 17 | 196,665 | 0 | 499 | 197,164 |
| runs\\detect\\train | 3 | 71,055 | 0 | 226 | 71,281 |
| runs\\detect\\train (Files) | 1 | 98 | 0 | 1 | 99 |
| runs\\detect\\train10 | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train11 | 3 | 64,701 | 0 | 165 | 64,866 |
| runs\\detect\\train11 (Files) | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train11\\weights | 2 | 64,596 | 0 | 164 | 64,760 |
| runs\\detect\\train2 | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train3 | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train4 | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train5 | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train6 | 3 | 60,069 | 0 | 100 | 60,169 |
| runs\\detect\\train6 (Files) | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train6\\weights | 2 | 59,964 | 0 | 99 | 60,063 |
| runs\\detect\\train7 | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train8 | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train9 | 1 | 105 | 0 | 1 | 106 |
| runs\\detect\\train\\weights | 2 | 70,957 | 0 | 225 | 71,182 |
Summary / [Details](details.md) / [Diff Summary](diff.md) / [Diff Details](diff-details.md)

@ -0,0 +1,107 @@
Date : 2025-07-13 22:39:37
Directory : d:\codes\YOLOv8face1
Total : 50 files, 1044944 codes, 269 comments, 6297 blanks, all 1051510 lines
Languages
+------------------+------------+------------+------------+------------+------------+
| language | files | code | comment | blank | total |
+------------------+------------+------------+------------+------------+------------+
| XML | 16 | 1,008,913 | 0 | 6,056 | 1,014,969 |
| Python | 18 | 34,812 | 265 | 218 | 35,295 |
| YAML | 14 | 1,177 | 3 | 19 | 1,199 |
| pip requirements | 1 | 30 | 1 | 0 | 31 |
| PostCSS | 1 | 12 | 0 | 4 | 16 |
+------------------+------------+------------+------------+------------+------------+
Directories
+---------------------------------------------------------------------+------------+------------+------------+------------+------------+
| path | files | code | comment | blank | total |
+---------------------------------------------------------------------+------------+------------+------------+------------+------------+
| . | 50 | 1,044,944 | 269 | 6,297 | 1,051,510 |
| . (Files) | 17 | 778,586 | 212 | 5,608 | 784,406 |
| .idea | 5 | 50 | 0 | 0 | 50 |
| .idea (Files) | 3 | 24 | 0 | 0 | 24 |
| .idea\inspectionProfiles | 2 | 26 | 0 | 0 | 26 |
| UIProgram | 7 | 34,005 | 23 | 41 | 34,069 |
| datasets | 3 | 89 | 34 | 26 | 149 |
| datasets (Files) | 1 | 79 | 32 | 19 | 130 |
| datasets\faceData | 1 | 5 | 2 | 4 | 11 |
| datasets\micai | 1 | 5 | 0 | 3 | 8 |
| models | 1 | 35,549 | 0 | 123 | 35,672 |
| runs | 17 | 196,665 | 0 | 499 | 197,164 |
| runs\detect | 17 | 196,665 | 0 | 499 | 197,164 |
| runs\detect\train | 3 | 71,055 | 0 | 226 | 71,281 |
| runs\detect\train (Files) | 1 | 98 | 0 | 1 | 99 |
| runs\detect\train10 | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train11 | 3 | 64,701 | 0 | 165 | 64,866 |
| runs\detect\train11 (Files) | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train11\weights | 2 | 64,596 | 0 | 164 | 64,760 |
| runs\detect\train2 | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train3 | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train4 | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train5 | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train6 | 3 | 60,069 | 0 | 100 | 60,169 |
| runs\detect\train6 (Files) | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train6\weights | 2 | 59,964 | 0 | 99 | 60,063 |
| runs\detect\train7 | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train8 | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train9 | 1 | 105 | 0 | 1 | 106 |
| runs\detect\train\weights | 2 | 70,957 | 0 | 225 | 71,182 |
+---------------------------------------------------------------------+------------+------------+------------+------------+------------+
Files
+---------------------------------------------------------------------+------------------+------------+------------+------------+------------+
| filename | language | code | comment | blank | total |
+---------------------------------------------------------------------+------------------+------------+------------+------------+------------+
| d:\codes\YOLOv8face1\.idea\YOLOv8face.iml | XML | 12 | 0 | 0 | 12 |
| d:\codes\YOLOv8face1\.idea\inspectionProfiles\Project_Default.xml | XML | 20 | 0 | 0 | 20 |
| d:\codes\YOLOv8face1\.idea\inspectionProfiles\profiles_settings.xml | XML | 6 | 0 | 0 | 6 |
| d:\codes\YOLOv8face1\.idea\misc.xml | XML | 4 | 0 | 0 | 4 |
| d:\codes\YOLOv8face1\.idea\modules.xml | XML | 8 | 0 | 0 | 8 |
| d:\codes\YOLOv8face1\CITATION.cff | YAML | 19 | 1 | 1 | 21 |
| d:\codes\YOLOv8face1\CameraTest.py | Python | 25 | 12 | 9 | 46 |
| d:\codes\YOLOv8face1\Config.py | Python | 4 | 3 | 3 | 10 |
| d:\codes\YOLOv8face1\MainProgram.py | Python | 442 | 99 | 84 | 625 |
| d:\codes\YOLOv8face1\UIProgram\QssLoader.py | Python | 7 | 0 | 1 | 8 |
| d:\codes\YOLOv8face1\UIProgram\UiMain.py | Python | 505 | 7 | 8 | 520 |
| d:\codes\YOLOv8face1\UIProgram\__init__.py | Python | 0 | 0 | 1 | 1 |
| d:\codes\YOLOv8face1\UIProgram\precess_bar.py | Python | 32 | 3 | 12 | 47 |
| d:\codes\YOLOv8face1\UIProgram\style.css | PostCSS | 12 | 0 | 4 | 16 |
| d:\codes\YOLOv8face1\UIProgram\ui_sources.py | Python | 0 | 7 | 4 | 11 |
| d:\codes\YOLOv8face1\UIProgram\ui_sources_rc.py | Python | 33,449 | 6 | 11 | 33,466 |
| d:\codes\YOLOv8face1\VideoTest.py | Python | 18 | 12 | 7 | 37 |
| d:\codes\YOLOv8face1\datasets\count_size.py | Python | 79 | 32 | 19 | 130 |
| d:\codes\YOLOv8face1\datasets\faceData\data.yaml | YAML | 5 | 2 | 4 | 11 |
| d:\codes\YOLOv8face1\datasets\micai\data.yaml | YAML | 5 | 0 | 3 | 8 |
| d:\codes\YOLOv8face1\detect_tools.py | Python | 132 | 55 | 36 | 223 |
| d:\codes\YOLOv8face1\imgTest.py | Python | 9 | 8 | 4 | 21 |
| d:\codes\YOLOv8face1\installPackages.py | Python | 5 | 0 | 3 | 8 |
| d:\codes\YOLOv8face1\main.py | Python | 5 | 0 | 0 | 5 |
| d:\codes\YOLOv8face1\models\best.pt | XML | 35,549 | 0 | 123 | 35,672 |
| d:\codes\YOLOv8face1\requirements.txt | pip requirements | 30 | 1 | 0 | 31 |
| d:\codes\YOLOv8face1\runs\detect\train10\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train11\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train11\weights\best.pt | XML | 32,298 | 0 | 82 | 32,380 |
| d:\codes\YOLOv8face1\runs\detect\train11\weights\last.pt | XML | 32,298 | 0 | 82 | 32,380 |
| d:\codes\YOLOv8face1\runs\detect\train2\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train3\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train4\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train5\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train6\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train6\weights\best.pt | XML | 29,917 | 0 | 49 | 29,966 |
| d:\codes\YOLOv8face1\runs\detect\train6\weights\last.pt | XML | 30,047 | 0 | 50 | 30,097 |
| d:\codes\YOLOv8face1\runs\detect\train7\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train8\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train9\args.yaml | YAML | 105 | 0 | 1 | 106 |
| d:\codes\YOLOv8face1\runs\detect\train\args.yaml | YAML | 98 | 0 | 1 | 99 |
| d:\codes\YOLOv8face1\runs\detect\train\weights\best.pt | XML | 35,549 | 0 | 123 | 35,672 |
| d:\codes\YOLOv8face1\runs\detect\train\weights\last.pt | XML | 35,408 | 0 | 102 | 35,510 |
| d:\codes\YOLOv8face1\setup.py | Python | 77 | 17 | 12 | 106 |
| d:\codes\YOLOv8face1\test_CUDA.py | Python | 7 | 0 | 1 | 8 |
| d:\codes\YOLOv8face1\train.py | Python | 16 | 4 | 3 | 23 |
| d:\codes\YOLOv8face1\yolo11n.pt | XML | 35,992 | 0 | 174 | 36,166 |
| d:\codes\YOLOv8face1\yolov8m.pt | XML | 520,050 | 0 | 4,022 | 524,072 |
| d:\codes\YOLOv8face1\yolov8n.pt | XML | 43,044 | 0 | 229 | 43,273 |
| d:\codes\YOLOv8face1\yolov8s.pt | XML | 178,711 | 0 | 1,020 | 179,731 |
| Total | | 1,044,944 | 269 | 6,297 | 1,051,510 |
+---------------------------------------------------------------------+------------------+------------+------------+------------+------------+

@ -0,0 +1,8 @@
# 默认忽略的文件
/shelf/
/workspace.xml
# 基于编辑器的 HTTP 客户端请求
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

@ -0,0 +1,12 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="py39" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="GOOGLE" />
<option name="myDocStringFormat" value="Google" />
</component>
</module>

@ -0,0 +1,20 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
<option name="ignoredPackages">
<value>
<list size="7">
<item index="0" class="java.lang.String" itemvalue="torch" />
<item index="1" class="java.lang.String" itemvalue="torchvision" />
<item index="2" class="java.lang.String" itemvalue="seaborn" />
<item index="3" class="java.lang.String" itemvalue="thop" />
<item index="4" class="java.lang.String" itemvalue="matplotlib" />
<item index="5" class="java.lang.String" itemvalue="pyqt5-tools" />
<item index="6" class="java.lang.String" itemvalue="ultralytics" />
</list>
</value>
</option>
</inspection_tool>
</profile>
</component>

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="py39" project-jdk-type="Python SDK" />
</project>

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/YOLOv8face.iml" filepath="$PROJECT_DIR$/.idea/YOLOv8face.iml" />
</modules>
</component>
</project>

@ -0,0 +1,20 @@
cff-version: 1.2.0
preferred-citation:
type: software
message: If you use this software, please cite it as below.
authors:
- family-names: Jocher
given-names: Glenn
orcid: "https://orcid.org/0000-0001-5950-6979"
- family-names: Chaurasia
given-names: Ayush
orcid: "https://orcid.org/0000-0002-7603-6750"
- family-names: Qiu
given-names: Jing
orcid: "https://orcid.org/0000-0003-3783-7069"
title: "YOLO by Ultralytics"
version: 8.0.0
# doi: 10.5281/zenodo.3908559 # TODO
date-released: 2023-1-10
license: AGPL-3.0
url: "https://github.com/ultralytics/ultralytics"

@ -0,0 +1,46 @@
#coding:utf-8
import cv2
from ultralytics import YOLO
# 所需加载的模型目录
path = 'models/best.pt'
# Load the YOLOv8 model
model = YOLO(path)
ID = 0
while(ID<10):
cap = cv2.VideoCapture(ID)
# get a frame
ret, frame = cap.read()
if ret == False:
ID += 1
else:
print('摄像头ID:',ID)
break
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 inference on the frame
results = model(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

@ -0,0 +1,9 @@
#coding:utf-8
# 图片及视频检测结果保存路径
save_path = 'save_data'
# 使用的模型路径
model_path = 'runs/detect/train6/weights/best.pt'
names = {0: 'face'}
CH_names = ['迷彩']

Binary file not shown.

@ -0,0 +1,624 @@
# -*- coding: utf-8 -*-
import time
from PyQt5.QtWidgets import QApplication , QMainWindow, QFileDialog, \
QMessageBox,QWidget,QHeaderView,QTableWidgetItem, QAbstractItemView
import sys
import os
from PIL import ImageFont
from ultralytics import YOLO
sys.path.append('UIProgram')
from UIProgram.UiMain import Ui_MainWindow
import sys
from PyQt5.QtCore import QTimer, Qt, QThread, pyqtSignal,QCoreApplication
import detect_tools as tools
import cv2
import Config
from UIProgram.QssLoader import QSSLoader
from UIProgram.precess_bar import ProgressBar
import numpy as np
# import torch
class MainWindow(QMainWindow):
def __init__(self, parent=None):
# 调用父类 QMainWindow 的构造函数,初始化当前窗口实例
super(QMainWindow, self).__init__(parent)
# 创建 Ui_MainWindow 类的实例,该类用于管理界面元素
self.ui = Ui_MainWindow()
# 调用 setupUi 方法,将界面元素设置到当前窗口
self.ui.setupUi(self)
# 调用 initMain 方法,进行窗口的初始化操作
self.initMain()
# 调用 signalconnect 方法,连接界面元素的信号与相应的槽函数
self.signalconnect()
# 加载css渲染效果
# 指定 CSS 样式文件的路径
style_file = 'UIProgram/style.css'
# 调用 QSSLoader 类的 read_qss_file 方法,读取 CSS 样式文件内容
qssStyleSheet = QSSLoader.read_qss_file(style_file)
# 将读取到的 CSS 样式应用到当前窗口
self.setStyleSheet(qssStyleSheet)
#设置输入源的按钮(图片、视频、摄像头等等)
def signalconnect(self):
self.ui.PicBtn.clicked.connect(self.open_img)
self.ui.comboBox.activated.connect(self.combox_change)
self.ui.VideoBtn.clicked.connect(self.vedio_show)
self.ui.CapBtn.clicked.connect(self.camera_show)
self.ui.SaveBtn.clicked.connect(self.save_detect_video)
self.ui.ExitBtn.clicked.connect(QCoreApplication.quit)
self.ui.FilesBtn.clicked.connect(self.detact_batch_imgs)
def initMain(self):
self.show_width = 770
self.show_height = 480
self.org_path = None
self.is_camera_open = False
self.cap = None
# self.device = 0 if torch.cuda.is_available() else 'cpu'
# 加载检测模型
self.model = YOLO(Config.model_path, task='detect')
self.model(np.zeros((48, 48, 3))) #预先加载推理模型
self.fontC = ImageFont.truetype("Font/platech.ttf", 25, 0)
# 用于绘制不同颜色矩形框
self.colors = tools.Colors()
# 更新视频图像
self.timer_camera = QTimer()
# 更新检测信息表格
# self.timer_info = QTimer()
# 保存视频
self.timer_save_video = QTimer()
# 表格
self.ui.tableWidget.verticalHeader().setSectionResizeMode(QHeaderView.Fixed)
self.ui.tableWidget.verticalHeader().setDefaultSectionSize(40)
self.ui.tableWidget.setColumnWidth(0, 80) # 设置列宽
self.ui.tableWidget.setColumnWidth(1, 200)
self.ui.tableWidget.setColumnWidth(2, 150)
self.ui.tableWidget.setColumnWidth(3, 90)
self.ui.tableWidget.setColumnWidth(4, 230)
self.ui.tableWidget.setSelectionBehavior(QAbstractItemView.SelectRows) # 设置表格整行选中
self.ui.tableWidget.verticalHeader().setVisible(False) # 隐藏列标题
self.ui.tableWidget.setAlternatingRowColors(True) # 表格背景交替
def open_img(self):
if self.cap:
# 打开图片前关闭摄像头
self.video_stop()
self.is_camera_open = False
self.ui.CaplineEdit.setText('摄像头未开启')
self.cap = None
# 弹出的窗口名称:'打开图片'
# 默认打开的目录:'./'
# 只能打开.jpg与.gif结尾的图片文件
# file_path, _ = QFileDialog.getOpenFileName(self.ui.centralwidget, '打开图片', './', "Image files (*.jpg *.gif)")
file_path, _ = QFileDialog.getOpenFileName(None, '打开图片', './', "Image files (*.jpg *.jepg *.png)")
if not file_path:
return
self.ui.comboBox.setDisabled(False)
self.org_path = file_path
self.org_img = tools.img_cvread(self.org_path)
# 目标检测
t1 = time.time()
self.results = self.model(self.org_path)[0]
t2 = time.time()
take_time_str = '{:.3f} s'.format(t2 - t1)
self.ui.time_lb.setText(take_time_str)
location_list = self.results.boxes.xyxy.tolist()
self.location_list = [list(map(int, e)) for e in location_list]
cls_list = self.results.boxes.cls.tolist()
self.cls_list = [int(i) for i in cls_list]
self.conf_list = self.results.boxes.conf.tolist()
self.conf_list = ['%.2f %%' % (each*100) for each in self.conf_list]
# now_img = self.cv_img.copy()
# for loacation, type_id, conf in zip(self.location_list, self.cls_list, self.conf_list):
# type_id = int(type_id)
# color = self.colors(int(type_id), True)
# # cv2.rectangle(now_img, (int(x1), int(y1)), (int(x2), int(y2)), colors(int(type_id), True), 3)
# now_img = tools.drawRectBox(now_img, loacation, Config.CH_names[type_id], self.fontC, color)
now_img = self.results.plot()
self.draw_img = now_img
# 获取缩放后的图片尺寸
self.img_width, self.img_height = self.get_resize_size(now_img)
resize_cvimg = cv2.resize(now_img,(self.img_width, self.img_height))
pix_img = tools.cvimg_to_qpiximg(resize_cvimg)
self.ui.label_show.setPixmap(pix_img)
self.ui.label_show.setAlignment(Qt.AlignCenter)
# 设置路径显示
self.ui.PiclineEdit.setText(self.org_path)
# 目标数目
target_nums = len(self.cls_list)
self.ui.label_nums.setText(str(target_nums))
# 设置目标选择下拉框
choose_list = ['全部']
target_names = [Config.names[id]+ '_'+ str(index) for index,id in enumerate(self.cls_list)]
# object_list = sorted(set(self.cls_list))
# for each in object_list:
# choose_list.append(Config.CH_names[each])
choose_list = choose_list + target_names
self.ui.comboBox.clear()
self.ui.comboBox.addItems(choose_list)
if target_nums >= 1:
self.ui.type_lb.setText(Config.CH_names[self.cls_list[0]])
self.ui.label_conf.setText(str(self.conf_list[0]))
# 默认显示第一个目标框坐标
# 设置坐标位置值
self.ui.label_xmin.setText(str(self.location_list[0][0]))
self.ui.label_ymin.setText(str(self.location_list[0][1]))
self.ui.label_xmax.setText(str(self.location_list[0][2]))
self.ui.label_ymax.setText(str(self.location_list[0][3]))
else:
self.ui.type_lb.setText('')
self.ui.label_conf.setText('')
self.ui.label_xmin.setText('')
self.ui.label_ymin.setText('')
self.ui.label_xmax.setText('')
self.ui.label_ymax.setText('')
# # 删除表格所有行
self.ui.tableWidget.setRowCount(0)
self.ui.tableWidget.clearContents()
self.tabel_info_show(self.location_list, self.cls_list, self.conf_list,path=self.org_path)
def detact_batch_imgs(self):
if self.cap:
# 打开图片前关闭摄像头
self.video_stop()
self.is_camera_open = False
self.ui.CaplineEdit.setText('摄像头未开启')
self.cap = None
directory = QFileDialog.getExistingDirectory(self,
"选取文件夹",
"./") # 起始路径
if not directory:
return
self.org_path = directory
img_suffix = ['jpg','png','jpeg','bmp']
for file_name in os.listdir(directory):
full_path = os.path.join(directory,file_name)
if os.path.isfile(full_path) and file_name.split('.')[-1].lower() in img_suffix:
# self.ui.comboBox.setDisabled(False)
img_path = full_path
self.org_img = tools.img_cvread(img_path)
# 目标检测
t1 = time.time()
self.results = self.model(img_path)[0]
t2 = time.time()
take_time_str = '{:.3f} s'.format(t2 - t1)
self.ui.time_lb.setText(take_time_str)
location_list = self.results.boxes.xyxy.tolist()
self.location_list = [list(map(int, e)) for e in location_list]
cls_list = self.results.boxes.cls.tolist()
self.cls_list = [int(i) for i in cls_list]
self.conf_list = self.results.boxes.conf.tolist()
self.conf_list = ['%.2f %%' % (each * 100) for each in self.conf_list]
now_img = self.results.plot()
self.draw_img = now_img
# 获取缩放后的图片尺寸
self.img_width, self.img_height = self.get_resize_size(now_img)
resize_cvimg = cv2.resize(now_img, (self.img_width, self.img_height))
pix_img = tools.cvimg_to_qpiximg(resize_cvimg)
self.ui.label_show.setPixmap(pix_img)
self.ui.label_show.setAlignment(Qt.AlignCenter)
# 设置路径显示
self.ui.PiclineEdit.setText(img_path)
# 目标数目
target_nums = len(self.cls_list)
self.ui.label_nums.setText(str(target_nums))
# 设置目标选择下拉框
choose_list = ['全部']
target_names = [Config.names[id] + '_' + str(index) for index, id in enumerate(self.cls_list)]
choose_list = choose_list + target_names
self.ui.comboBox.clear()
self.ui.comboBox.addItems(choose_list)
if target_nums >= 1:
self.ui.type_lb.setText(Config.CH_names[self.cls_list[0]])
self.ui.label_conf.setText(str(self.conf_list[0]))
# 默认显示第一个目标框坐标
# 设置坐标位置值
self.ui.label_xmin.setText(str(self.location_list[0][0]))
self.ui.label_ymin.setText(str(self.location_list[0][1]))
self.ui.label_xmax.setText(str(self.location_list[0][2]))
self.ui.label_ymax.setText(str(self.location_list[0][3]))
else:
self.ui.type_lb.setText('')
self.ui.label_conf.setText('')
self.ui.label_xmin.setText('')
self.ui.label_ymin.setText('')
self.ui.label_xmax.setText('')
self.ui.label_ymax.setText('')
# # 删除表格所有行
# self.ui.tableWidget.setRowCount(0)
# self.ui.tableWidget.clearContents()
self.tabel_info_show(self.location_list, self.cls_list, self.conf_list, path=img_path)
self.ui.tableWidget.scrollToBottom()
QApplication.processEvents() #刷新页面
def draw_rect_and_tabel(self, results, img):
now_img = img.copy()
location_list = results.boxes.xyxy.tolist()
self.location_list = [list(map(int, e)) for e in location_list]
cls_list = results.boxes.cls.tolist()
self.cls_list = [int(i) for i in cls_list]
self.conf_list = results.boxes.conf.tolist()
self.conf_list = ['%.2f %%' % (each * 100) for each in self.conf_list]
for loacation, type_id, conf in zip(self.location_list, self.cls_list, self.conf_list):
type_id = int(type_id)
color = self.colors(int(type_id), True)
# cv2.rectangle(now_img, (int(x1), int(y1)), (int(x2), int(y2)), colors(int(type_id), True), 3)
now_img = tools.drawRectBox(now_img, loacation, Config.CH_names[type_id], self.fontC, color)
# 获取缩放后的图片尺寸
self.img_width, self.img_height = self.get_resize_size(now_img)
resize_cvimg = cv2.resize(now_img, (self.img_width, self.img_height))
pix_img = tools.cvimg_to_qpiximg(resize_cvimg)
self.ui.label_show.setPixmap(pix_img)
self.ui.label_show.setAlignment(Qt.AlignCenter)
# 设置路径显示
self.ui.PiclineEdit.setText(self.org_path)
# 目标数目
target_nums = len(self.cls_list)
self.ui.label_nums.setText(str(target_nums))
if target_nums >= 1:
self.ui.type_lb.setText(Config.CH_names[self.cls_list[0]])
self.ui.label_conf.setText(str(self.conf_list[0]))
self.ui.label_xmin.setText(str(self.location_list[0][0]))
self.ui.label_ymin.setText(str(self.location_list[0][1]))
self.ui.label_xmax.setText(str(self.location_list[0][2]))
self.ui.label_ymax.setText(str(self.location_list[0][3]))
else:
self.ui.type_lb.setText('')
self.ui.label_conf.setText('')
self.ui.label_xmin.setText('')
self.ui.label_ymin.setText('')
self.ui.label_xmax.setText('')
self.ui.label_ymax.setText('')
# 删除表格所有行
self.ui.tableWidget.setRowCount(0)
self.ui.tableWidget.clearContents()
self.tabel_info_show(self.location_list, self.cls_list, self.conf_list, path=self.org_path)
return now_img
def combox_change(self):
com_text = self.ui.comboBox.currentText()
if com_text == '全部':
cur_box = self.location_list
cur_img = self.results.plot()
self.ui.type_lb.setText(Config.CH_names[self.cls_list[0]])
self.ui.label_conf.setText(str(self.conf_list[0]))
else:
index = int(com_text.split('_')[-1])
cur_box = [self.location_list[index]]
cur_img = self.results[index].plot()
self.ui.type_lb.setText(Config.CH_names[self.cls_list[index]])
self.ui.label_conf.setText(str(self.conf_list[index]))
# 设置坐标位置值
self.ui.label_xmin.setText(str(cur_box[0][0]))
self.ui.label_ymin.setText(str(cur_box[0][1]))
self.ui.label_xmax.setText(str(cur_box[0][2]))
self.ui.label_ymax.setText(str(cur_box[0][3]))
resize_cvimg = cv2.resize(cur_img, (self.img_width, self.img_height))
pix_img = tools.cvimg_to_qpiximg(resize_cvimg)
self.ui.label_show.clear()
self.ui.label_show.setPixmap(pix_img)
self.ui.label_show.setAlignment(Qt.AlignCenter)
def get_video_path(self):
file_path, _ = QFileDialog.getOpenFileName(None, '打开视频', './', "Image files (*.avi *.mp4 *.jepg *.png)")
if not file_path:
return None
self.org_path = file_path
self.ui.VideolineEdit.setText(file_path)
return file_path
def video_start(self):
# 删除表格所有行
self.ui.tableWidget.setRowCount(0)
self.ui.tableWidget.clearContents()
# 清空下拉框
self.ui.comboBox.clear()
# 定时器开启,每隔一段时间,读取一帧
self.timer_camera.start(1)
self.timer_camera.timeout.connect(self.open_frame)
def tabel_info_show(self, locations, clses, confs, path=None):
path = path
for location, cls, conf in zip(locations, clses, confs):
row_count = self.ui.tableWidget.rowCount() # 返回当前行数(尾部)
self.ui.tableWidget.insertRow(row_count) # 尾部插入一行
item_id = QTableWidgetItem(str(row_count+1)) # 序号
item_id.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) # 设置文本居中
item_path = QTableWidgetItem(str(path)) # 路径
# item_path.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
item_cls = QTableWidgetItem(str(Config.CH_names[cls]))
item_cls.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) # 设置文本居中
item_conf = QTableWidgetItem(str(conf))
item_conf.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) # 设置文本居中
item_location = QTableWidgetItem(str(location)) # 目标框位置
# item_location.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) # 设置文本居中
self.ui.tableWidget.setItem(row_count, 0, item_id)
self.ui.tableWidget.setItem(row_count, 1, item_path)
self.ui.tableWidget.setItem(row_count, 2, item_cls)
self.ui.tableWidget.setItem(row_count, 3, item_conf)
self.ui.tableWidget.setItem(row_count, 4, item_location)
self.ui.tableWidget.scrollToBottom()
def video_stop(self):
self.cap.release()
self.timer_camera.stop()
# self.timer_info.stop()
def open_frame(self):
ret, now_img = self.cap.read()
if ret:
# 目标检测
t1 = time.time()
results = self.model(now_img)[0]
t2 = time.time()
take_time_str = '{:.3f} s'.format(t2 - t1)
self.ui.time_lb.setText(take_time_str)
location_list = results.boxes.xyxy.tolist()
self.location_list = [list(map(int, e)) for e in location_list]
cls_list = results.boxes.cls.tolist()
self.cls_list = [int(i) for i in cls_list]
self.conf_list = results.boxes.conf.tolist()
self.conf_list = ['%.2f %%' % (each * 100) for each in self.conf_list]
now_img = results.plot()
# 获取缩放后的图片尺寸
self.img_width, self.img_height = self.get_resize_size(now_img)
resize_cvimg = cv2.resize(now_img, (self.img_width, self.img_height))
pix_img = tools.cvimg_to_qpiximg(resize_cvimg)
self.ui.label_show.setPixmap(pix_img)
self.ui.label_show.setAlignment(Qt.AlignCenter)
# 目标数目
target_nums = len(self.cls_list)
self.ui.label_nums.setText(str(target_nums))
# 设置目标选择下拉框
choose_list = ['全部']
target_names = [Config.names[id] + '_' + str(index) for index, id in enumerate(self.cls_list)]
# object_list = sorted(set(self.cls_list))
# for each in object_list:
# choose_list.append(Config.CH_names[each])
choose_list = choose_list + target_names
self.ui.comboBox.clear()
self.ui.comboBox.addItems(choose_list)
if target_nums >= 1:
self.ui.type_lb.setText(Config.CH_names[self.cls_list[0]])
self.ui.label_conf.setText(str(self.conf_list[0]))
# 默认显示第一个目标框坐标
# 设置坐标位置值
self.ui.label_xmin.setText(str(self.location_list[0][0]))
self.ui.label_ymin.setText(str(self.location_list[0][1]))
self.ui.label_xmax.setText(str(self.location_list[0][2]))
self.ui.label_ymax.setText(str(self.location_list[0][3]))
else:
self.ui.type_lb.setText('')
self.ui.label_conf.setText('')
self.ui.label_xmin.setText('')
self.ui.label_ymin.setText('')
self.ui.label_xmax.setText('')
self.ui.label_ymax.setText('')
# 删除表格所有行
# self.ui.tableWidget.setRowCount(0)
# self.ui.tableWidget.clearContents()
self.tabel_info_show(self.location_list, self.cls_list, self.conf_list, path=self.org_path)
else:
self.cap.release()
self.timer_camera.stop()
def vedio_show(self):
if self.is_camera_open:
self.is_camera_open = False
self.ui.CaplineEdit.setText('摄像头未开启')
video_path = self.get_video_path()
if not video_path:
return None
self.cap = cv2.VideoCapture(video_path)
self.video_start()
self.ui.comboBox.setDisabled(True)
def camera_show(self):
self.is_camera_open = not self.is_camera_open
if self.is_camera_open:
self.ui.CaplineEdit.setText('摄像头开启')
self.cap = cv2.VideoCapture(0)
self.video_start()
self.ui.comboBox.setDisabled(True)
else:
self.ui.CaplineEdit.setText('摄像头未开启')
self.ui.label_show.setText('')
if self.cap:
self.cap.release()
cv2.destroyAllWindows()
self.ui.label_show.clear()
def get_resize_size(self, img):
_img = img.copy()
img_height, img_width , depth= _img.shape
ratio = img_width / img_height
if ratio >= self.show_width / self.show_height:
self.img_width = self.show_width
self.img_height = int(self.img_width / ratio)
else:
self.img_height = self.show_height
self.img_width = int(self.img_height * ratio)
return self.img_width, self.img_height
def save_detect_video(self):
if self.cap is None and not self.org_path:
QMessageBox.about(self, '提示', '当前没有可保存信息,请先打开图片或视频!')
return
if self.is_camera_open:
QMessageBox.about(self, '提示', '摄像头视频无法保存!')
return
if self.cap:
res = QMessageBox.information(self, '提示', '保存视频检测结果可能需要较长时间,请确认是否继续保存?',QMessageBox.Yes | QMessageBox.No , QMessageBox.Yes)
if res == QMessageBox.Yes:
self.video_stop()
com_text = self.ui.comboBox.currentText()
self.btn2Thread_object = btn2Thread(self.org_path, self.model, com_text)
self.btn2Thread_object.start()
self.btn2Thread_object.update_ui_signal.connect(self.update_process_bar)
else:
return
else:
if os.path.isfile(self.org_path):
fileName = os.path.basename(self.org_path)
name , end_name= fileName.rsplit(".",1)
save_name = name + '_detect_result.' + end_name
save_img_path = os.path.join(Config.save_path, save_name)
# 保存图片
cv2.imwrite(save_img_path, self.draw_img)
QMessageBox.about(self, '提示', '图片保存成功!\n文件路径:{}'.format(save_img_path))
else:
img_suffix = ['jpg', 'png', 'jpeg', 'bmp']
for file_name in os.listdir(self.org_path):
full_path = os.path.join(self.org_path, file_name)
if os.path.isfile(full_path) and file_name.split('.')[-1].lower() in img_suffix:
name, end_name = file_name.rsplit(".",1)
save_name = name + '_detect_result.' + end_name
save_img_path = os.path.join(Config.save_path, save_name)
results = self.model(full_path)[0]
now_img = results.plot()
# 保存图片
cv2.imwrite(save_img_path, now_img)
QMessageBox.about(self, '提示', '图片保存成功!\n文件路径:{}'.format(Config.save_path))
def update_process_bar(self,cur_num, total):
if cur_num == 1:
self.progress_bar = ProgressBar(self)
self.progress_bar.show()
if cur_num >= total:
self.progress_bar.close()
QMessageBox.about(self, '提示', '视频保存成功!\n文件在{}目录下'.format(Config.save_path))
return
if self.progress_bar.isVisible() is False:
# 点击取消保存时,终止进程
self.btn2Thread_object.stop()
return
value = int(cur_num / total *100)
self.progress_bar.setValue(cur_num, total, value)
QApplication.processEvents()
class btn2Thread(QThread):
"""
进行检测后的视频保存
"""
# 声明一个信号
update_ui_signal = pyqtSignal(int,int)
def __init__(self, path, model, com_text):
super(btn2Thread, self).__init__()
self.org_path = path
self.model = model
self.com_text = com_text
# 用于绘制不同颜色矩形框
self.colors = tools.Colors()
self.is_running = True # 标志位,表示线程是否正在运行
def run(self):
# VideoCapture方法是cv2库提供的读取视频方法
cap = cv2.VideoCapture(self.org_path)
# 设置需要保存视频的格式“xvid”
# 该参数是MPEG-4编码类型文件名后缀为.avi
fourcc = cv2.VideoWriter_fourcc(*'XVID')
# 设置视频帧频
fps = cap.get(cv2.CAP_PROP_FPS)
# 设置视频大小
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# VideoWriter方法是cv2库提供的保存视频方法
# 按照设置的格式来out输出
fileName = os.path.basename(self.org_path)
name, end_name = fileName.split('.')
save_name = name + '_detect_result.avi'
save_video_path = os.path.join(Config.save_path, save_name)
out = cv2.VideoWriter(save_video_path, fourcc, fps, size)
prop = cv2.CAP_PROP_FRAME_COUNT
total = int(cap.get(prop))
print("[INFO] 视频总帧数:{}".format(total))
cur_num = 0
# 确定视频打开并循环读取
while (cap.isOpened() and self.is_running):
cur_num += 1
print('当前第{}帧,总帧数{}'.format(cur_num, total))
# 逐帧读取ret返回布尔值
# 参数ret为True 或者False,代表有没有读取到图片
# frame表示截取到一帧的图片
ret, frame = cap.read()
if ret == True:
# 检测
results = self.model(frame)[0]
frame = results.plot()
out.write(frame)
self.update_ui_signal.emit(cur_num, total)
else:
break
# 释放资源
cap.release()
out.release()
def stop(self):
self.is_running = False
if __name__ == "__main__":
app = QApplication(sys.argv)
win = MainWindow()
win.show()
sys.exit(app.exec_())

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

@ -0,0 +1,8 @@
class QSSLoader:
def __init__(self):
pass
@staticmethod
def read_qss_file(qss_file_name):
with open(qss_file_name, 'r', encoding='UTF-8') as file:
return file.read()

@ -0,0 +1,519 @@
# -*- coding: utf-8 -*-
# Form implementation generated from reading ui file 'UiMain.ui'
#
# Created by: PyQt5 UI code generator 5.15.9
#
# WARNING: Any manual changes made to this file will be lost when pyuic5 is
# run again. Do not edit this file unless you know what you are doing.
from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(1250, 830)
MainWindow.setMinimumSize(QtCore.QSize(1250, 830))
MainWindow.setMaximumSize(QtCore.QSize(1250, 830))
icon = QtGui.QIcon()
icon.addPixmap(QtGui.QPixmap("C:/Users/pc/Desktop/YOLOv8face/UIProgram/ui_imgs/icons/目标检测.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
MainWindow.setWindowIcon(icon)
self.centralwidget = QtWidgets.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.frame = QtWidgets.QFrame(self.centralwidget)
self.frame.setGeometry(QtCore.QRect(10, 100, 791, 711))
self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame.setObjectName("frame")
self.frame_2 = QtWidgets.QFrame(self.frame)
self.frame_2.setGeometry(QtCore.QRect(10, 0, 771, 481))
self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame_2.setObjectName("frame_2")
self.label_show = QtWidgets.QLabel(self.frame_2)
self.label_show.setGeometry(QtCore.QRect(0, 0, 770, 480))
self.label_show.setMinimumSize(QtCore.QSize(770, 480))
self.label_show.setMaximumSize(QtCore.QSize(770, 480))
self.label_show.setStyleSheet("border-image: url(C:/Users/pc/Desktop/YOLOv8face/UIProgram/ui_imgs/icons/face.png);")
self.label_show.setText("")
self.label_show.setObjectName("label_show")
self.frame_3 = QtWidgets.QFrame(self.frame)
self.frame_3.setGeometry(QtCore.QRect(10, 480, 771, 221))
self.frame_3.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame_3.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame_3.setObjectName("frame_3")
self.groupBox_3 = QtWidgets.QGroupBox(self.frame_3)
self.groupBox_3.setGeometry(QtCore.QRect(0, 10, 771, 221))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(16)
self.groupBox_3.setFont(font)
self.groupBox_3.setObjectName("groupBox_3")
self.tableWidget = QtWidgets.QTableWidget(self.groupBox_3)
self.tableWidget.setGeometry(QtCore.QRect(10, 30, 751, 181))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(14)
self.tableWidget.setFont(font)
self.tableWidget.setObjectName("tableWidget")
self.tableWidget.setColumnCount(5)
self.tableWidget.setRowCount(0)
item = QtWidgets.QTableWidgetItem()
self.tableWidget.setHorizontalHeaderItem(0, item)
item = QtWidgets.QTableWidgetItem()
self.tableWidget.setHorizontalHeaderItem(1, item)
item = QtWidgets.QTableWidgetItem()
self.tableWidget.setHorizontalHeaderItem(2, item)
item = QtWidgets.QTableWidgetItem()
self.tableWidget.setHorizontalHeaderItem(3, item)
item = QtWidgets.QTableWidgetItem()
self.tableWidget.setHorizontalHeaderItem(4, item)
self.frame_4 = QtWidgets.QFrame(self.centralwidget)
self.frame_4.setGeometry(QtCore.QRect(810, 100, 431, 711))
self.frame_4.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame_4.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame_4.setObjectName("frame_4")
self.groupBox = QtWidgets.QGroupBox(self.frame_4)
self.groupBox.setGeometry(QtCore.QRect(0, 0, 431, 171))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(16)
self.groupBox.setFont(font)
self.groupBox.setObjectName("groupBox")
self.PiclineEdit = QtWidgets.QLineEdit(self.groupBox)
self.PiclineEdit.setGeometry(QtCore.QRect(70, 40, 311, 31))
self.PiclineEdit.setInputMask("")
self.PiclineEdit.setObjectName("PiclineEdit")
self.VideolineEdit = QtWidgets.QLineEdit(self.groupBox)
self.VideolineEdit.setGeometry(QtCore.QRect(70, 80, 311, 31))
self.VideolineEdit.setObjectName("VideolineEdit")
self.CapBtn = QtWidgets.QPushButton(self.groupBox)
self.CapBtn.setGeometry(QtCore.QRect(30, 120, 30, 30))
self.CapBtn.setStyleSheet("border-image: url(C:/Users/pc/Desktop/YOLOv8face/UIProgram/ui_imgs/icons/camera.png);")
self.CapBtn.setText("")
self.CapBtn.setObjectName("CapBtn")
self.PicBtn = QtWidgets.QPushButton(self.groupBox)
self.PicBtn.setGeometry(QtCore.QRect(30, 40, 30, 30))
self.PicBtn.setStyleSheet("border-image: url(C:/Users/pc/Desktop/YOLOv8face/UIProgram/ui_imgs/icons/img.png);")
self.PicBtn.setText("")
self.PicBtn.setObjectName("PicBtn")
self.VideoBtn = QtWidgets.QPushButton(self.groupBox)
self.VideoBtn.setGeometry(QtCore.QRect(30, 80, 30, 30))
self.VideoBtn.setStyleSheet("border-image: url(C:/Users/pc/Desktop/YOLOv8face/UIProgram/ui_imgs/icons/video.png);")
self.VideoBtn.setText("")
self.VideoBtn.setObjectName("VideoBtn")
self.CaplineEdit = QtWidgets.QLineEdit(self.groupBox)
self.CaplineEdit.setGeometry(QtCore.QRect(70, 120, 311, 31))
self.CaplineEdit.setObjectName("CaplineEdit")
self.FilesBtn = QtWidgets.QPushButton(self.groupBox)
self.FilesBtn.setGeometry(QtCore.QRect(390, 40, 30, 30))
self.FilesBtn.setStyleSheet("border-image: url(C:/Users/pc/Desktop/YOLOv8face/UIProgram/ui_imgs/icons/folder.png);")
self.FilesBtn.setText("")
self.FilesBtn.setObjectName("FilesBtn")
self.groupBox_2 = QtWidgets.QGroupBox(self.frame_4)
self.groupBox_2.setGeometry(QtCore.QRect(0, 180, 431, 371))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(16)
self.groupBox_2.setFont(font)
self.groupBox_2.setObjectName("groupBox_2")
self.frame_6 = QtWidgets.QFrame(self.groupBox_2)
self.frame_6.setGeometry(QtCore.QRect(0, 190, 431, 171))
self.frame_6.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame_6.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame_6.setObjectName("frame_6")
self.label_4 = QtWidgets.QLabel(self.frame_6)
self.label_4.setGeometry(QtCore.QRect(10, 10, 131, 41))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(16)
self.label_4.setFont(font)
self.label_4.setStyleSheet("")
self.label_4.setObjectName("label_4")
self.layoutWidget = QtWidgets.QWidget(self.frame_6)
self.layoutWidget.setGeometry(QtCore.QRect(20, 60, 161, 37))
self.layoutWidget.setObjectName("layoutWidget")
self.horizontalLayout = QtWidgets.QHBoxLayout(self.layoutWidget)
self.horizontalLayout.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout.setObjectName("horizontalLayout")
self.label_6 = QtWidgets.QLabel(self.layoutWidget)
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(16)
font.setBold(False)
font.setWeight(50)
self.label_6.setFont(font)
self.label_6.setObjectName("label_6")
self.horizontalLayout.addWidget(self.label_6)
self.label_xmin = QtWidgets.QLabel(self.layoutWidget)
palette = QtGui.QPalette()
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
self.label_xmin.setPalette(palette)
font = QtGui.QFont()
font.setFamily("Arial")
font.setPointSize(16)
font.setBold(True)
font.setWeight(75)
self.label_xmin.setFont(font)
self.label_xmin.setText("")
self.label_xmin.setObjectName("label_xmin")
self.horizontalLayout.addWidget(self.label_xmin)
self.layoutWidget1 = QtWidgets.QWidget(self.frame_6)
self.layoutWidget1.setGeometry(QtCore.QRect(210, 60, 161, 37))
self.layoutWidget1.setObjectName("layoutWidget1")
self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.layoutWidget1)
self.horizontalLayout_2.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_2.setObjectName("horizontalLayout_2")
self.label_8 = QtWidgets.QLabel(self.layoutWidget1)
self.label_8.setObjectName("label_8")
self.horizontalLayout_2.addWidget(self.label_8)
self.label_ymin = QtWidgets.QLabel(self.layoutWidget1)
palette = QtGui.QPalette()
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
self.label_ymin.setPalette(palette)
font = QtGui.QFont()
font.setFamily("Arial")
font.setPointSize(16)
font.setBold(True)
font.setWeight(75)
self.label_ymin.setFont(font)
self.label_ymin.setText("")
self.label_ymin.setObjectName("label_ymin")
self.horizontalLayout_2.addWidget(self.label_ymin)
self.layoutWidget2 = QtWidgets.QWidget(self.frame_6)
self.layoutWidget2.setGeometry(QtCore.QRect(20, 120, 161, 37))
self.layoutWidget2.setObjectName("layoutWidget2")
self.horizontalLayout_3 = QtWidgets.QHBoxLayout(self.layoutWidget2)
self.horizontalLayout_3.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_3.setObjectName("horizontalLayout_3")
self.label_7 = QtWidgets.QLabel(self.layoutWidget2)
self.label_7.setObjectName("label_7")
self.horizontalLayout_3.addWidget(self.label_7)
self.label_xmax = QtWidgets.QLabel(self.layoutWidget2)
palette = QtGui.QPalette()
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
self.label_xmax.setPalette(palette)
font = QtGui.QFont()
font.setFamily("Arial")
font.setPointSize(16)
font.setBold(True)
font.setWeight(75)
self.label_xmax.setFont(font)
self.label_xmax.setText("")
self.label_xmax.setObjectName("label_xmax")
self.horizontalLayout_3.addWidget(self.label_xmax)
self.layoutWidget3 = QtWidgets.QWidget(self.frame_6)
self.layoutWidget3.setGeometry(QtCore.QRect(210, 120, 161, 37))
self.layoutWidget3.setObjectName("layoutWidget3")
self.horizontalLayout_4 = QtWidgets.QHBoxLayout(self.layoutWidget3)
self.horizontalLayout_4.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_4.setObjectName("horizontalLayout_4")
self.label_9 = QtWidgets.QLabel(self.layoutWidget3)
self.label_9.setObjectName("label_9")
self.horizontalLayout_4.addWidget(self.label_9)
self.label_ymax = QtWidgets.QLabel(self.layoutWidget3)
palette = QtGui.QPalette()
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
self.label_ymax.setPalette(palette)
font = QtGui.QFont()
font.setFamily("Arial")
font.setPointSize(16)
font.setBold(True)
font.setWeight(75)
self.label_ymax.setFont(font)
self.label_ymax.setText("")
self.label_ymax.setObjectName("label_ymax")
self.horizontalLayout_4.addWidget(self.label_ymax)
self.layoutWidget4 = QtWidgets.QWidget(self.groupBox_2)
self.layoutWidget4.setGeometry(QtCore.QRect(208, 40, 211, 37))
self.layoutWidget4.setObjectName("layoutWidget4")
self.horizontalLayout_5 = QtWidgets.QHBoxLayout(self.layoutWidget4)
self.horizontalLayout_5.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_5.setObjectName("horizontalLayout_5")
self.label = QtWidgets.QLabel(self.layoutWidget4)
self.label.setObjectName("label")
self.horizontalLayout_5.addWidget(self.label)
self.label_nums = QtWidgets.QLabel(self.layoutWidget4)
palette = QtGui.QPalette()
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0, 128))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0, 128))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)
brush = QtGui.QBrush(QtGui.QColor(0, 0, 0, 128))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush)
self.label_nums.setPalette(palette)
font = QtGui.QFont()
font.setFamily("Arial")
font.setPointSize(16)
font.setBold(True)
font.setWeight(75)
self.label_nums.setFont(font)
self.label_nums.setText("")
self.label_nums.setObjectName("label_nums")
self.horizontalLayout_5.addWidget(self.label_nums)
self.layoutWidget5 = QtWidgets.QWidget(self.groupBox_2)
self.layoutWidget5.setGeometry(QtCore.QRect(10, 90, 291, 38))
self.layoutWidget5.setObjectName("layoutWidget5")
self.horizontalLayout_6 = QtWidgets.QHBoxLayout(self.layoutWidget5)
self.horizontalLayout_6.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_6.setObjectName("horizontalLayout_6")
self.label_5 = QtWidgets.QLabel(self.layoutWidget5)
self.label_5.setObjectName("label_5")
self.horizontalLayout_6.addWidget(self.label_5)
self.comboBox = QtWidgets.QComboBox(self.layoutWidget5)
self.comboBox.setObjectName("comboBox")
self.horizontalLayout_6.addWidget(self.comboBox)
self.layoutWidget_2 = QtWidgets.QWidget(self.groupBox_2)
self.layoutWidget_2.setGeometry(QtCore.QRect(10, 40, 171, 37))
self.layoutWidget_2.setObjectName("layoutWidget_2")
self.horizontalLayout_7 = QtWidgets.QHBoxLayout(self.layoutWidget_2)
self.horizontalLayout_7.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_7.setObjectName("horizontalLayout_7")
self.label_10 = QtWidgets.QLabel(self.layoutWidget_2)
self.label_10.setObjectName("label_10")
self.horizontalLayout_7.addWidget(self.label_10)
self.time_lb = QtWidgets.QLabel(self.layoutWidget_2)
palette = QtGui.QPalette()
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0, 128))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0, 128))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)
brush = QtGui.QBrush(QtGui.QColor(0, 0, 0, 128))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush)
self.time_lb.setPalette(palette)
font = QtGui.QFont()
font.setFamily("Arial")
font.setPointSize(16)
font.setBold(True)
font.setWeight(75)
self.time_lb.setFont(font)
self.time_lb.setText("")
self.time_lb.setObjectName("time_lb")
self.horizontalLayout_7.addWidget(self.time_lb)
self.layoutWidget6 = QtWidgets.QWidget(self.groupBox_2)
self.layoutWidget6.setGeometry(QtCore.QRect(210, 140, 191, 41))
self.layoutWidget6.setObjectName("layoutWidget6")
self.horizontalLayout_8 = QtWidgets.QHBoxLayout(self.layoutWidget6)
self.horizontalLayout_8.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_8.setObjectName("horizontalLayout_8")
self.label_11 = QtWidgets.QLabel(self.layoutWidget6)
self.label_11.setObjectName("label_11")
self.horizontalLayout_8.addWidget(self.label_11)
self.label_conf = QtWidgets.QLabel(self.layoutWidget6)
palette = QtGui.QPalette()
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
self.label_conf.setPalette(palette)
font = QtGui.QFont()
font.setFamily("Arial")
font.setPointSize(16)
font.setBold(True)
font.setWeight(75)
self.label_conf.setFont(font)
self.label_conf.setText("")
self.label_conf.setObjectName("label_conf")
self.horizontalLayout_8.addWidget(self.label_conf)
self.layoutWidget_3 = QtWidgets.QWidget(self.groupBox_2)
self.layoutWidget_3.setGeometry(QtCore.QRect(10, 140, 191, 41))
self.layoutWidget_3.setObjectName("layoutWidget_3")
self.horizontalLayout_9 = QtWidgets.QHBoxLayout(self.layoutWidget_3)
self.horizontalLayout_9.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_9.setObjectName("horizontalLayout_9")
self.label_13 = QtWidgets.QLabel(self.layoutWidget_3)
self.label_13.setMaximumSize(QtCore.QSize(60, 16777215))
self.label_13.setObjectName("label_13")
self.horizontalLayout_9.addWidget(self.label_13)
self.type_lb = QtWidgets.QLabel(self.layoutWidget_3)
palette = QtGui.QPalette()
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 0, 0))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
self.type_lb.setPalette(palette)
font = QtGui.QFont()
font.setFamily("Arial")
font.setPointSize(16)
font.setBold(True)
font.setWeight(75)
self.type_lb.setFont(font)
self.type_lb.setText("")
self.type_lb.setObjectName("type_lb")
self.horizontalLayout_9.addWidget(self.type_lb)
self.groupBox_4 = QtWidgets.QGroupBox(self.frame_4)
self.groupBox_4.setGeometry(QtCore.QRect(0, 560, 431, 141))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(16)
self.groupBox_4.setFont(font)
self.groupBox_4.setObjectName("groupBox_4")
self.SaveBtn = QtWidgets.QPushButton(self.groupBox_4)
self.SaveBtn.setGeometry(QtCore.QRect(30, 50, 151, 51))
icon1 = QtGui.QIcon()
icon1.addPixmap(QtGui.QPixmap(":/icons/ui_imgs/icons/保存.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.SaveBtn.setIcon(icon1)
self.SaveBtn.setIconSize(QtCore.QSize(30, 30))
self.SaveBtn.setObjectName("SaveBtn")
self.ExitBtn = QtWidgets.QPushButton(self.groupBox_4)
self.ExitBtn.setGeometry(QtCore.QRect(250, 50, 151, 51))
icon2 = QtGui.QIcon()
icon2.addPixmap(QtGui.QPixmap(":/icons/ui_imgs/icons/退出.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.ExitBtn.setIcon(icon2)
self.ExitBtn.setIconSize(QtCore.QSize(30, 30))
self.ExitBtn.setObjectName("ExitBtn")
self.frame_5 = QtWidgets.QFrame(self.centralwidget)
self.frame_5.setGeometry(QtCore.QRect(10, 10, 1231, 91))
self.frame_5.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame_5.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame_5.setObjectName("frame_5")
self.label_3 = QtWidgets.QLabel(self.frame_5)
self.label_3.setGeometry(QtCore.QRect(240, 0, 811, 51))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(30)
self.label_3.setFont(font)
self.label_3.setObjectName("label_3")
self.label_2 = QtWidgets.QLabel(self.frame_5)
self.label_2.setGeometry(QtCore.QRect(20, 60, 311, 21))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(14)
font.setUnderline(True)
self.label_2.setFont(font)
self.label_2.setObjectName("label_2")
self.label_12 = QtWidgets.QLabel(self.frame_5)
self.label_12.setGeometry(QtCore.QRect(1070, 60, 131, 21))
font = QtGui.QFont()
font.setFamily("华文楷体")
font.setPointSize(14)
font.setUnderline(True)
self.label_12.setFont(font)
self.label_12.setObjectName("label_12")
MainWindow.setCentralWidget(self.centralwidget)
self.statusbar = QtWidgets.QStatusBar(MainWindow)
self.statusbar.setObjectName("statusbar")
MainWindow.setStatusBar(self.statusbar)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
def retranslateUi(self, MainWindow):
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate("MainWindow", "基于YOLOv8的目标检测系统"))
self.groupBox_3.setTitle(_translate("MainWindow", "检测结果与位置信息"))
item = self.tableWidget.horizontalHeaderItem(0)
item.setText(_translate("MainWindow", "序号"))
item = self.tableWidget.horizontalHeaderItem(1)
item.setText(_translate("MainWindow", "文件路径"))
item = self.tableWidget.horizontalHeaderItem(2)
item.setText(_translate("MainWindow", "类别"))
item = self.tableWidget.horizontalHeaderItem(3)
item.setText(_translate("MainWindow", "置信度"))
item = self.tableWidget.horizontalHeaderItem(4)
item.setText(_translate("MainWindow", "坐标位置"))
self.groupBox.setTitle(_translate("MainWindow", "文件导入"))
self.PiclineEdit.setPlaceholderText(_translate("MainWindow", "请选择图片文件"))
self.VideolineEdit.setPlaceholderText(_translate("MainWindow", "请选择视频文件"))
self.CaplineEdit.setPlaceholderText(_translate("MainWindow", "摄像头未开启"))
self.groupBox_2.setTitle(_translate("MainWindow", "检测结果"))
self.label_4.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">目标位置:</span></p></body></html>"))
self.label_6.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">xmin:</span></p></body></html>"))
self.label_8.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">ymin</span></p></body></html>"))
self.label_7.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">xmax</span></p></body></html>"))
self.label_9.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">ymax</span></p></body></html>"))
self.label.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">目标数目:</span></p></body></html>"))
self.label_5.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">目标选择:</span></p></body></html>"))
self.label_10.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">用时:</span></p></body></html>"))
self.label_11.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">置信度:</span></p></body></html>"))
self.label_13.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-weight:600;\">类型:</span></p></body></html>"))
self.groupBox_4.setTitle(_translate("MainWindow", "操作"))
self.SaveBtn.setText(_translate("MainWindow", "保存"))
self.ExitBtn.setText(_translate("MainWindow", "退出"))
self.label_3.setText(_translate("MainWindow", "基于YOLOv8的目标检测系统"))

File diff suppressed because it is too large Load Diff

@ -0,0 +1,47 @@
# -*- coding: utf-8 -*-
# 进度条
from PyQt5.QtWidgets import QDialog, QLabel, QProgressBar, QPushButton, QVBoxLayout, QHBoxLayout
class ProgressBar(QDialog):
def __init__(self, parent=None):
super(ProgressBar, self).__init__(parent)
self.resize(350, 100)
self.setWindowTitle(self.tr("视频保存进度信息"))
self.TipLabel = QLabel(self.tr("当前帧/总帧数:0/0"))
self.FeatLabel = QLabel(self.tr("保存进度:"))
self.FeatProgressBar = QProgressBar(self)
self.FeatProgressBar.setMinimum(0)
self.FeatProgressBar.setMaximum(100) # 总进程换算为100
self.FeatProgressBar.setValue(0) # 进度条初始值为0
TipLayout = QHBoxLayout()
TipLayout.addWidget(self.TipLabel)
FeatLayout = QHBoxLayout()
FeatLayout.addWidget(self.FeatLabel)
FeatLayout.addWidget(self.FeatProgressBar)
self.cancelButton = QPushButton('取消保存', self)
buttonlayout = QHBoxLayout()
buttonlayout.addStretch(1)
buttonlayout.addWidget(self.cancelButton)
layout = QVBoxLayout()
layout.addLayout(FeatLayout)
layout.addLayout(TipLayout)
layout.addLayout(buttonlayout)
self.setLayout(layout)
self.cancelButton.clicked.connect(self.onCancel)
# self.show()
def setValue(self, start, end, progress):
self.TipLabel.setText(self.tr("当前帧/总帧数:" + " " + str(start) + "/" + str(end)))
self.FeatProgressBar.setValue(progress)
def onCancel(self, event):
self.close()

@ -0,0 +1,16 @@
QGroupBox {
border: 2px solid gray;
}
QPushButton#SaveBtn{color:black;
background-color:rgb(255, 130, 71);
border-radius:6px}
QPushButton#ExitBtn{color:black;
background-color:rgb(255, 130, 71);
border-radius:6px}
QPushButton:hover{color:red}
QPushButton:pressed{background-color:rgb(180,180,180);border: None;}
#MainWindow{border-image:url(UIProgram/ui_imgs/bg14.png)}

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

@ -0,0 +1,10 @@
# -*- coding: utf-8 -*-
# Form implementation generated from reading ui file 'ui_sources.qrc'
#
# Created by: PyQt5 UI code generator 5.15.9
#
# WARNING: Any manual changes made to this file will be lost when pyuic5 is
# run again. Do not edit this file unless you know what you are doing.

@ -0,0 +1,13 @@
<RCC>
<qresource prefix="icons">
<file>ui_imgs/icons/目标检测.png</file>
<file>ui_imgs/icons/保存.png</file>
<file>ui_imgs/icons/退出.png</file>
<file>ui_imgs/huoyan.png</file>
<file>ui_imgs/icons/camera.png</file>
<file>ui_imgs/icons/folder.png</file>
<file>ui_imgs/icons/img.png</file>
<file>ui_imgs/icons/video.png</file>
</qresource>
<qresource prefix="bgs"/>
</RCC>

File diff suppressed because it is too large Load Diff

@ -0,0 +1,37 @@
#coding:utf-8
import cv2
from ultralytics import YOLO
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
video_path = "TestFiles/1.mp4"
# Load the YOLOv8 model
model = YOLO(path)
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 inference on the frame
results = model(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

@ -0,0 +1,129 @@
# 1、统计数据集中小、中、大 GT的个数
# 2、统计某个类别小、中、大 GT的个数
# 3、统计数据集中ss、sm、sl GT的个数
import os
from pathlib import Path
import matplotlib.pyplot as plt
# 设置中文字体为微软雅黑
plt.rcParams['font.sans-serif'] = 'SimHei'
def getGtAreaAndRatio(label_dir):
"""
得到不同尺度的gt框个数
:params label_dir: label文件地址
:return data_dict: {dict: 3} 3 x {'类别':{area':[...]}, {'ratio':[...]}}
"""
data_dict = {}
assert Path(label_dir).is_dir(), "label_dir is not exist"
txts = os.listdir(label_dir) # 得到label_dir目录下的所有txt GT文件
for txt in txts: # 遍历每一个txt文件
with open(os.path.join(label_dir, txt), 'r') as f: # 打开当前txt文件 并读取所有行的数据
lines = f.readlines()
for line in lines: # 遍历当前txt文件中每一行的数据
temp = line.split() # str to list{5}
coor_list = list(map(lambda x: x, temp[1:])) # [x, y, w, h]
area = float(coor_list[2]) * float(coor_list[3]) # 计算出当前txt文件中每一个gt的面积
# center = (int(coor_list[0] + 0.5*coor_list[2]),
# int(coor_list[1] + 0.5*coor_list[3]))
if float(coor_list[3])!=0:
ratio = round(float(coor_list[2]) / float(coor_list[3]), 2) # 计算出当前txt文件中每一个gt的 w/h
if temp[0] not in data_dict:
data_dict[temp[0]] = {}
data_dict[temp[0]]['area'] = []
data_dict[temp[0]]['ratio'] = []
data_dict[temp[0]]['area'].append(area)
data_dict[temp[0]]['ratio'].append(ratio)
return data_dict
def getSMLGtNumByClass(data_dict, class_num):
"""
计算某个类别的小物体中物体大物体的个数
params data_dict: {dict: 3} 3 x {'类别':{area':[...]}, {'ratio':[...]}}
params class_num: 类别 0, 1, 2
return s: 该类别小物体的个数 0 < area <= 0.5%
m: 该类别中物体的个数 0.5% < area <= 1%
l: 该类别大物体的个数 area > 1%
"""
s, m, l = 0, 0, 0
# 图片的尺寸大小 注意修改!!!
h = 640
w = 640
for item in data_dict['{}'.format(class_num)]['area']:
if item * h * w <= h * w * 0.035:
s += 1
elif item * h * w <= h * w * 0.165:
m += 1
else:
l += 1
return s, m, l
def getAllSMLGtNum(data_dict, isEachClass=False):
"""
数据集所有类别小大GT分布情况
isEachClass 控制是否按每个类别输出结构
"""
S, M, L = 0, 0, 0
# 需要手动初始化下,有多少个类别就需要写多个
classDict = {'0': {'S': 0, 'M': 0, 'L': 0}}
print(classDict['0']['S'])
# range(class_num)类别数 注意修改!!!
if isEachClass == False:
for i in range(1):
s, m, l = getSMLGtNumByClass(data_dict, i)
S += s
M += m
L += l
return [S, M, L]
else:
for i in range(3):
S = 0
M = 0
L = 0
s, m, l = getSMLGtNumByClass(data_dict, i)
S += s
M += m
L += l
classDict[str(i)]['S'] = S
classDict[str(i)]['M'] = M
classDict[str(i)]['L'] = L
return classDict
# 画图函数
def plotAllSML(SML):
x = ['S:[0, 120x120]', 'M:[120x120, 260x260]', 'L:[260*260, 640x640]']
fig = plt.figure(figsize=(10, 8)) # 画布大小和像素密度
plt.bar(x, SML, width=0.5, align="center", color=['skyblue', 'orange', 'green'])
for a, b, i in zip(x, SML, range(len(x))): # zip 函数
plt.text(a, b + 0.01, "%d" % int(SML[i]), ha='center', fontsize=15, color="r") # plt.text 函数
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.xlabel('gt大小', fontsize=16)
plt.ylabel('数量', fontsize=16)
plt.title('人脸检测训练集小、中、大分布情况(640x640)', fontsize=16)
plt.show()
# 保存到本地
# plt.savefig("")
if __name__ == '__main__':
labeldir = r'C:\Users\pc\Desktop\YOLOv8face\datasets\faceData\train\labels'
data_dict = getGtAreaAndRatio(labeldir)
# 1、数据集所有类别小、中、大GT分布情况
# 控制是否按每个类别输出结构
isEachClass = False
SML = getAllSMLGtNum(data_dict, isEachClass)
# print(SML)
if not isEachClass:
plotAllSML(SML)

@ -0,0 +1,222 @@
# encoding:utf-8
import cv2
from PyQt5.QtGui import QPixmap, QImage
import numpy as np
from PIL import Image,ImageDraw,ImageFont
import csv
import os
# fontC = ImageFont.truetype("Font/platech.ttf", 20, 0)
# 绘图展示
def cv_show(name,img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def drawRectBox(image, rect, addText, fontC, color):
"""
绘制矩形框与结果
:param image: 原始图像
:param rect: 矩形框坐标, int类型
:param addText: 类别名称
:param fontC: 字体
:return:
"""
# 绘制位置方框
cv2.rectangle(image, (rect[0], rect[1]),
(rect[2], rect[3]),
color, 2)
# 绘制字体背景框
cv2.rectangle(image, (rect[0] - 1, rect[1] - 25), (rect[0] + 60, rect[1]), color, -1, cv2.LINE_AA)
# 图片 添加的文字 位置 字体 字体大小 字体颜色 字体粗细
# cv2.putText(image, addText, (int(rect[0])+2, int(rect[1])-3), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
img = Image.fromarray(image)
draw = ImageDraw.Draw(img)
draw.text((rect[0]+2, rect[1]-27), addText, (255, 255, 255), font=fontC)
imagex = np.array(img)
return imagex
def img_cvread(path):
# 读取含中文名的图片文件
# img = cv2.imread(path)
img = cv2.imdecode(np.fromfile(path, dtype=np.uint8), cv2.IMREAD_COLOR)
return img
def draw_boxes(img, boxes):
for each in boxes:
x1 = each[0]
y1 = each[1]
x2 = each[2]
y2 = each[3]
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
return img
def cvimg_to_qpiximg(cvimg):
height, width, depth = cvimg.shape
cvimg = cv2.cvtColor(cvimg, cv2.COLOR_BGR2RGB)
qimg = QImage(cvimg.data, width, height, width * depth, QImage.Format_RGB888)
qpix_img = QPixmap(qimg)
return qpix_img
def save_video():
# VideoCapture方法是cv2库提供的读取视频方法
cap = cv2.VideoCapture('C:\\Users\\xxx\\Desktop\\sweet.mp4')
# 设置需要保存视频的格式“xvid”
# 该参数是MPEG-4编码类型文件名后缀为.avi
fourcc = cv2.VideoWriter_fourcc(*'XVID')
# 设置视频帧频
fps = cap.get(cv2.CAP_PROP_FPS)
# 设置视频大小
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# VideoWriter方法是cv2库提供的保存视频方法
# 按照设置的格式来out输出
out = cv2.VideoWriter('C:\\Users\\xxx\\Desktop\\out.avi', fourcc, fps, size)
# 确定视频打开并循环读取
while (cap.isOpened()):
# 逐帧读取ret返回布尔值
# 参数ret为True 或者False,代表有没有读取到图片
# frame表示截取到一帧的图片
ret, frame = cap.read()
if ret == True:
# 垂直翻转矩阵
frame = cv2.flip(frame, 0)
out.write(frame)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
# 释放资源
cap.release()
out.release()
# 关闭窗口
cv2.destroyAllWindows()
# 封装函数:图片上显示中文
def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=50):
if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式
fontStyle = ImageFont.truetype(
"simsun.ttc", textSize, encoding="utf-8")
# 绘制文本
draw.text(position, text, textColor, font=fontStyle)
# 转换回OpenCV格式
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
def insert_rows(path, lines ,header):
"""
将n行数据写入csv文件
:param path:
:param lines:
:return:
"""
no_header = False
if not os.path.exists(path):
no_header = True
start_num = 1
else:
start_num = len(open(path).readlines())
csv_head = header
with open(path, 'a', newline='') as f:
csv_write = csv.writer(f)
if no_header:
csv_write.writerow(csv_head) # 写入表头
for each_list in lines:
# 添加序号
each_list = [start_num] + each_list
csv_write.writerow(each_list)
# 序号 + 1
start_num += 1
class Colors:
# 用于绘制不同颜色
def __init__(self):
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
self.n = len(self.palette)
self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255],
[153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255],
[255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102],
[51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]],
dtype=np.uint8)
def __call__(self, i, bgr=False):
"""Converts hex color codes to rgb values."""
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
def yolo_to_location(w,h,yolo_data):
# yolo文件转两点坐标注意画图坐标要转换成int格式
x_, y_, w_, h_ = yolo_data
x1 = int(w * x_ - 0.5 * w * w_)
x2 = int(w * x_ + 0.5 * w * w_)
y1 = int(h * y_ - 0.5 * h * h_)
y2 = int(h * y_ + 0.5 * h * h_)
# cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0))
return [x1,y1,x2,y2]
def location_to_yolo(w, h, locations):
# x1,y1左上角坐标x2,y2右上角坐标
x1, y1, x2, y2 = locations
x_ = (x1 + x2) / 2 / w
x_ = float('%.5f' % x_)
y_ = (y1 + y2) / 2 / h
y_ = float('%.5f' % y_)
w_ = (x2 - x1) / w
w_ = float('%.5f' % w_)
h_ = (y2 - y1) / h
h_ = float('%.5f' % h_)
return [x_,y_,w_,h_]
def draw_yolo_data(img_path, yolo_file_path):
# 读取yolo标注数据并显示
img = cv2.imread(img_path)
h, w, _ = img.shape
print(img.shape)
# yolo标注数据文件名为786_rgb_0616.txt
with open(yolo_file_path, 'r') as f:
data = f.readlines()
for each in data:
temp = each.split()
# ['1', '0.43906', '0.52083', '0.34687', '0.15']
# YOLO转换为两点坐标x1, x2, y1, y2
x_, y_, w_, h_ = eval(temp[1]), eval(temp[2]), eval(temp[3]), eval(temp[4])
x1, y1, x2, y2 = yolo_to_location(w,h,[x_, y_, w_, h_])
# 画图验证框是否正确
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255))
cv2.imshow('windows', img)
cv2.waitKey(0)
if __name__ == '__main__':
img_path = 'TestFiles/1.jpg'
yolo_file_path = 'save_data/yolo_labels/1.txt'
draw_yolo_data(img_path, yolo_file_path)

@ -0,0 +1,21 @@
#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/test4.jpg"
# 加载预训练模型
# conf 0.25 object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

@ -0,0 +1,7 @@
import os
pkgs = ['ultralytics','PyQt5==5.15.2','pyqt5-tools==5.15.2.3.1']
for each in pkgs:
cmd_line = f"pip install {each} -i https://pypi.tuna.tsinghua.edu.cn/simple"
os.system(cmd_line)

@ -0,0 +1,5 @@
import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())
print(torch.cuda_version)
print(torch.backends.cudnn.version())

Binary file not shown.

@ -0,0 +1,31 @@
certifi==2023.7.22
charset-normalizer==3.3.0
colorama==0.4.6
contourpy==1.1.1
cycler==0.12.1
fonttools==4.43.1
idna==3.4
importlib-resources==6.1.0
kiwisolver==1.4.5
matplotlib==3.8.0
numpy==1.26.1
opencv-python==4.8.1.78
packaging==23.2
psutil==5.9.6
py-cpuinfo==9.0.0
pyparsing==3.1.1
python-dateutil==2.8.2
pyyaml==6.0.1
requests==2.31.0
scipy==1.11.3
seaborn==0.13.0
six==1.16.0
thop==0.1.1-2209072238
# torch==1.9.0
tqdm==4.66.1
typing-extensions==4.8.0
ultralytics==8.0.199
urllib3==2.0.6
zipp==3.17.0
PyQt5==5.15.2
pyqt5-tools==5.15.2.3.1

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

@ -0,0 +1,98 @@
task: detect
mode: train
model: yolov8n.pt
data: datasets/faceData/data.yaml
epochs: 300
patience: 50
batch: 4
imgsz: 640
save: true
save_period: -1
cache: true
device: 0
workers: 12
project: null
name: train
exist_ok: false
pretrained: true
optimizer: auto
verbose: true
seed: 0
deterministic: true
single_cls: false
rect: false
cos_lr: false
close_mosaic: 10
resume: false
amp: true
fraction: 1.0
profile: false
freeze: null
overlap_mask: true
mask_ratio: 4
dropout: 0.0
val: true
split: val
save_json: false
save_hybrid: false
conf: null
iou: 0.7
max_det: 300
half: false
dnn: false
plots: true
source: null
show: false
save_txt: false
save_conf: false
save_crop: false
show_labels: true
show_conf: true
vid_stride: 1
stream_buffer: false
line_width: null
visualize: false
augment: false
agnostic_nms: false
classes: null
retina_masks: false
boxes: true
format: torchscript
keras: false
optimize: false
int8: false
dynamic: false
simplify: false
opset: null
workspace: 4
nms: false
lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 7.5
cls: 0.5
dfl: 1.5
pose: 12.0
kobj: 1.0
label_smoothing: 0.0
nbs: 64
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0
cfg: null
tracker: botsort.yaml
save_dir: runs\detect\train

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 213 KiB

@ -0,0 +1,301 @@
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
1, 1.8366, 1.6172, 1.23, 0.73216, 0.4057, 0.45729, 0.22342, 1.6173, 1.0335, 1.1176, 0.0033324, 0.0033324, 0.0033324
2, 1.6996, 1.1415, 1.1168, 0.74462, 0.42432, 0.48077, 0.23546, 1.5982, 0.9299, 1.0967, 0.0066437, 0.0066437, 0.0066437
3, 1.6942, 1.0916, 1.1144, 0.75214, 0.41787, 0.48389, 0.24459, 1.5876, 0.91869, 1.1124, 0.009933, 0.009933, 0.009933
4, 1.7002, 1.0721, 1.1165, 0.7459, 0.43503, 0.49319, 0.24855, 1.5479, 0.88047, 1.0963, 0.009901, 0.009901, 0.009901
5, 1.6564, 1.0036, 1.1029, 0.75251, 0.44131, 0.50205, 0.25468, 1.526, 0.86462, 1.0938, 0.009901, 0.009901, 0.009901
6, 1.6158, 0.96155, 1.0948, 0.77936, 0.44961, 0.51763, 0.26644, 1.5144, 0.82764, 1.092, 0.009868, 0.009868, 0.009868
7, 1.6037, 0.94048, 1.0802, 0.77111, 0.46326, 0.52994, 0.27099, 1.5069, 0.79548, 1.0745, 0.009835, 0.009835, 0.009835
8, 1.5843, 0.92476, 1.0833, 0.7791, 0.46007, 0.52712, 0.27167, 1.4899, 0.78321, 1.079, 0.009802, 0.009802, 0.009802
9, 1.5674, 0.89715, 1.0711, 0.77923, 0.46449, 0.53776, 0.28055, 1.47, 0.76636, 1.068, 0.009769, 0.009769, 0.009769
10, 1.5512, 0.87952, 1.0653, 0.77521, 0.47389, 0.54483, 0.28164, 1.4713, 0.7573, 1.0651, 0.009736, 0.009736, 0.009736
11, 1.5439, 0.87521, 1.0637, 0.77805, 0.48045, 0.55307, 0.28919, 1.4537, 0.74462, 1.0681, 0.009703, 0.009703, 0.009703
12, 1.5349, 0.86626, 1.0638, 0.79144, 0.48473, 0.55704, 0.2906, 1.4447, 0.74001, 1.0585, 0.00967, 0.00967, 0.00967
13, 1.5389, 0.8634, 1.0593, 0.79582, 0.48468, 0.55985, 0.29173, 1.4378, 0.72863, 1.0536, 0.009637, 0.009637, 0.009637
14, 1.527, 0.85232, 1.0575, 0.79959, 0.48924, 0.56194, 0.29369, 1.4325, 0.72248, 1.0529, 0.009604, 0.009604, 0.009604
15, 1.5167, 0.83858, 1.0472, 0.79612, 0.50162, 0.57528, 0.30143, 1.4291, 0.70915, 1.0517, 0.009571, 0.009571, 0.009571
16, 1.511, 0.84003, 1.0572, 0.79682, 0.49903, 0.57238, 0.29949, 1.4255, 0.70613, 1.0467, 0.009538, 0.009538, 0.009538
17, 1.5004, 0.82738, 1.0452, 0.80276, 0.50093, 0.57732, 0.30315, 1.4102, 0.70162, 1.04, 0.009505, 0.009505, 0.009505
18, 1.4945, 0.82371, 1.046, 0.80777, 0.5, 0.57768, 0.30523, 1.4061, 0.69825, 1.0444, 0.009472, 0.009472, 0.009472
19, 1.4989, 0.82164, 1.049, 0.80186, 0.50044, 0.57537, 0.3031, 1.4107, 0.69426, 1.0475, 0.009439, 0.009439, 0.009439
20, 1.4915, 0.81587, 1.0433, 0.80456, 0.51095, 0.58619, 0.30709, 1.4054, 0.68744, 1.0408, 0.009406, 0.009406, 0.009406
21, 1.4793, 0.80911, 1.0439, 0.80117, 0.50482, 0.58149, 0.30702, 1.4053, 0.68784, 1.0416, 0.009373, 0.009373, 0.009373
22, 1.4898, 0.81082, 1.045, 0.80043, 0.50707, 0.5833, 0.30586, 1.4035, 0.67973, 1.0387, 0.00934, 0.00934, 0.00934
23, 1.4828, 0.80697, 1.0414, 0.80335, 0.51238, 0.58912, 0.31067, 1.3903, 0.67495, 1.0341, 0.009307, 0.009307, 0.009307
24, 1.4826, 0.80751, 1.0396, 0.79396, 0.51665, 0.58972, 0.31185, 1.3907, 0.67116, 1.0299, 0.009274, 0.009274, 0.009274
25, 1.469, 0.79728, 1.037, 0.80462, 0.51567, 0.59328, 0.31328, 1.3887, 0.66722, 1.0345, 0.009241, 0.009241, 0.009241
26, 1.4824, 0.80153, 1.0417, 0.8068, 0.51665, 0.59521, 0.31561, 1.385, 0.66532, 1.0326, 0.009208, 0.009208, 0.009208
27, 1.4735, 0.79673, 1.0361, 0.81817, 0.51434, 0.59627, 0.3157, 1.3824, 0.6601, 1.0295, 0.009175, 0.009175, 0.009175
28, 1.4669, 0.79048, 1.0345, 0.80737, 0.51793, 0.59457, 0.31481, 1.3863, 0.6613, 1.0321, 0.009142, 0.009142, 0.009142
29, 1.478, 0.79455, 1.0352, 0.80684, 0.51922, 0.59626, 0.31542, 1.3801, 0.65883, 1.0294, 0.009109, 0.009109, 0.009109
30, 1.4666, 0.78563, 1.0305, 0.81345, 0.51743, 0.59667, 0.31766, 1.3758, 0.64901, 1.0265, 0.009076, 0.009076, 0.009076
31, 1.4614, 0.785, 1.0308, 0.80573, 0.52441, 0.60194, 0.31961, 1.3724, 0.6502, 1.0264, 0.009043, 0.009043, 0.009043
32, 1.4634, 0.78495, 1.03, 0.81169, 0.51881, 0.59713, 0.31653, 1.3714, 0.64888, 1.0239, 0.00901, 0.00901, 0.00901
33, 1.4562, 0.7776, 1.0319, 0.80824, 0.5239, 0.60092, 0.31811, 1.3725, 0.6479, 1.0243, 0.008977, 0.008977, 0.008977
34, 1.4608, 0.78239, 1.0343, 0.8152, 0.5246, 0.60352, 0.32082, 1.3738, 0.64521, 1.0266, 0.008944, 0.008944, 0.008944
35, 1.4568, 0.77935, 1.0331, 0.81581, 0.52456, 0.60224, 0.31993, 1.3704, 0.64374, 1.0275, 0.008911, 0.008911, 0.008911
36, 1.4511, 0.76946, 1.0274, 0.8176, 0.52902, 0.60728, 0.32229, 1.366, 0.64142, 1.0232, 0.008878, 0.008878, 0.008878
37, 1.45, 0.76984, 1.0284, 0.8169, 0.52652, 0.60466, 0.32245, 1.3641, 0.63698, 1.0221, 0.008845, 0.008845, 0.008845
38, 1.4495, 0.76749, 1.0282, 0.8147, 0.52902, 0.60759, 0.32213, 1.3639, 0.63651, 1.0216, 0.008812, 0.008812, 0.008812
39, 1.447, 0.76387, 1.0268, 0.82156, 0.52726, 0.60757, 0.32386, 1.3625, 0.63241, 1.0208, 0.008779, 0.008779, 0.008779
40, 1.4438, 0.76333, 1.0252, 0.81094, 0.5334, 0.61003, 0.32494, 1.3625, 0.63078, 1.0217, 0.008746, 0.008746, 0.008746
41, 1.4421, 0.76169, 1.0255, 0.81466, 0.53125, 0.60807, 0.32363, 1.361, 0.63154, 1.0219, 0.008713, 0.008713, 0.008713
42, 1.4381, 0.76428, 1.0251, 0.8128, 0.53541, 0.61123, 0.32527, 1.3571, 0.63195, 1.0211, 0.00868, 0.00868, 0.00868
43, 1.4432, 0.76062, 1.0273, 0.809, 0.53595, 0.61143, 0.32473, 1.359, 0.62995, 1.0218, 0.008647, 0.008647, 0.008647
44, 1.4449, 0.76623, 1.0273, 0.80624, 0.53644, 0.61108, 0.32432, 1.3596, 0.62857, 1.0207, 0.008614, 0.008614, 0.008614
45, 1.4417, 0.76109, 1.0217, 0.81111, 0.53605, 0.6127, 0.32521, 1.3593, 0.62836, 1.0198, 0.008581, 0.008581, 0.008581
46, 1.4321, 0.75374, 1.0216, 0.81368, 0.5364, 0.61196, 0.32574, 1.3587, 0.62687, 1.0201, 0.008548, 0.008548, 0.008548
47, 1.446, 0.7608, 1.0226, 0.80926, 0.53914, 0.61401, 0.32651, 1.3554, 0.62499, 1.0183, 0.008515, 0.008515, 0.008515
48, 1.4349, 0.75259, 1.0236, 0.8108, 0.53845, 0.61365, 0.32693, 1.3533, 0.62398, 1.0167, 0.008482, 0.008482, 0.008482
49, 1.4363, 0.75445, 1.0237, 0.81126, 0.53949, 0.61408, 0.32765, 1.3524, 0.62248, 1.0177, 0.008449, 0.008449, 0.008449
50, 1.4324, 0.74858, 1.0226, 0.81467, 0.53841, 0.61406, 0.32794, 1.352, 0.62139, 1.0183, 0.008416, 0.008416, 0.008416
51, 1.4338, 0.75026, 1.0216, 0.81477, 0.5388, 0.61559, 0.3293, 1.3514, 0.62012, 1.0187, 0.008383, 0.008383, 0.008383
52, 1.4261, 0.74897, 1.0223, 0.81789, 0.53772, 0.61498, 0.32866, 1.3509, 0.61872, 1.0174, 0.00835, 0.00835, 0.00835
53, 1.4313, 0.74894, 1.021, 0.81446, 0.53791, 0.6149, 0.32906, 1.3498, 0.6189, 1.0167, 0.008317, 0.008317, 0.008317
54, 1.4374, 0.75515, 1.0203, 0.81533, 0.53649, 0.61463, 0.32942, 1.3488, 0.61815, 1.0159, 0.008284, 0.008284, 0.008284
55, 1.4341, 0.75004, 1.02, 0.81816, 0.53693, 0.61413, 0.32926, 1.348, 0.61723, 1.0161, 0.008251, 0.008251, 0.008251
56, 1.4227, 0.74446, 1.0193, 0.82126, 0.53624, 0.61425, 0.3296, 1.3484, 0.61657, 1.0171, 0.008218, 0.008218, 0.008218
57, 1.4275, 0.7423, 1.0168, 0.82008, 0.53633, 0.61454, 0.33001, 1.3468, 0.61503, 1.0164, 0.008185, 0.008185, 0.008185
58, 1.4282, 0.74306, 1.0176, 0.81829, 0.53909, 0.61599, 0.33017, 1.3465, 0.61423, 1.0163, 0.008152, 0.008152, 0.008152
59, 1.4247, 0.73917, 1.015, 0.8196, 0.53988, 0.61715, 0.33048, 1.3466, 0.61296, 1.0165, 0.008119, 0.008119, 0.008119
60, 1.4332, 0.74758, 1.017, 0.82261, 0.53908, 0.61859, 0.33099, 1.3464, 0.61228, 1.0161, 0.008086, 0.008086, 0.008086
61, 1.4205, 0.74213, 1.0188, 0.82373, 0.53919, 0.61875, 0.33134, 1.3464, 0.61194, 1.0162, 0.008053, 0.008053, 0.008053
62, 1.425, 0.74274, 1.0166, 0.82279, 0.53968, 0.61843, 0.33131, 1.347, 0.61144, 1.0159, 0.00802, 0.00802, 0.00802
63, 1.4291, 0.74075, 1.017, 0.81851, 0.54154, 0.61889, 0.3315, 1.3469, 0.61152, 1.0161, 0.007987, 0.007987, 0.007987
64, 1.4219, 0.74298, 1.0177, 0.82097, 0.54026, 0.61851, 0.33164, 1.3466, 0.61163, 1.016, 0.007954, 0.007954, 0.007954
65, 1.4266, 0.73952, 1.017, 0.81926, 0.54022, 0.6187, 0.33209, 1.3463, 0.61171, 1.0163, 0.007921, 0.007921, 0.007921
66, 1.4278, 0.74037, 1.0147, 0.81862, 0.54081, 0.61909, 0.33213, 1.3457, 0.61062, 1.0158, 0.007888, 0.007888, 0.007888
67, 1.4183, 0.73243, 1.0126, 0.81686, 0.54248, 0.61944, 0.33257, 1.3448, 0.60959, 1.0152, 0.007855, 0.007855, 0.007855
68, 1.4215, 0.73568, 1.0146, 0.81829, 0.54322, 0.62038, 0.33265, 1.3439, 0.60876, 1.015, 0.007822, 0.007822, 0.007822
69, 1.4224, 0.7344, 1.0136, 0.81864, 0.54334, 0.62044, 0.333, 1.3438, 0.60831, 1.015, 0.007789, 0.007789, 0.007789
70, 1.416, 0.7341, 1.0113, 0.81974, 0.54415, 0.62089, 0.33331, 1.3433, 0.60708, 1.0146, 0.007756, 0.007756, 0.007756
71, 1.4174, 0.7324, 1.0141, 0.82096, 0.5444, 0.62096, 0.33341, 1.3424, 0.60636, 1.0143, 0.007723, 0.007723, 0.007723
72, 1.4189, 0.73294, 1.011, 0.81981, 0.54518, 0.62188, 0.33355, 1.3424, 0.60576, 1.0144, 0.00769, 0.00769, 0.00769
73, 1.4138, 0.73535, 1.0157, 0.81997, 0.54377, 0.62134, 0.33364, 1.342, 0.60532, 1.0143, 0.007657, 0.007657, 0.007657
74, 1.4145, 0.7302, 1.0136, 0.81922, 0.54459, 0.62154, 0.33371, 1.3424, 0.60538, 1.0144, 0.007624, 0.007624, 0.007624
75, 1.4123, 0.72954, 1.0118, 0.81753, 0.54651, 0.62168, 0.33367, 1.3424, 0.60525, 1.0142, 0.007591, 0.007591, 0.007591
76, 1.4134, 0.73017, 1.0138, 0.81633, 0.54607, 0.62139, 0.33364, 1.3417, 0.60494, 1.0138, 0.007558, 0.007558, 0.007558
77, 1.4047, 0.7226, 1.009, 0.81883, 0.54415, 0.62148, 0.33379, 1.3417, 0.60449, 1.0139, 0.007525, 0.007525, 0.007525
78, 1.4129, 0.73034, 1.0152, 0.81776, 0.54474, 0.62172, 0.33386, 1.3414, 0.60429, 1.0137, 0.007492, 0.007492, 0.007492
79, 1.4083, 0.72722, 1.0145, 0.8189, 0.54452, 0.62164, 0.33389, 1.3411, 0.60379, 1.0136, 0.007459, 0.007459, 0.007459
80, 1.4136, 0.73059, 1.0134, 0.81713, 0.54626, 0.62225, 0.33425, 1.3407, 0.60362, 1.0134, 0.007426, 0.007426, 0.007426
81, 1.4155, 0.72986, 1.0126, 0.81597, 0.54607, 0.6218, 0.33399, 1.3406, 0.60358, 1.0133, 0.007393, 0.007393, 0.007393
82, 1.4049, 0.72214, 1.0108, 0.81612, 0.54587, 0.62191, 0.33446, 1.3407, 0.60367, 1.0133, 0.00736, 0.00736, 0.00736
83, 1.4091, 0.72572, 1.0106, 0.8181, 0.54601, 0.62233, 0.33441, 1.3407, 0.60404, 1.0132, 0.007327, 0.007327, 0.007327
84, 1.4115, 0.7256, 1.0107, 0.81762, 0.54695, 0.62245, 0.33442, 1.3408, 0.6035, 1.0133, 0.007294, 0.007294, 0.007294
85, 1.4051, 0.72315, 1.0097, 0.81982, 0.54646, 0.62276, 0.33442, 1.3406, 0.60327, 1.0132, 0.007261, 0.007261, 0.007261
86, 1.4086, 0.72298, 1.0084, 0.81937, 0.5468, 0.6231, 0.33452, 1.3401, 0.60288, 1.0131, 0.007228, 0.007228, 0.007228
87, 1.4008, 0.71738, 1.0089, 0.81983, 0.5472, 0.62341, 0.33454, 1.3398, 0.60275, 1.0129, 0.007195, 0.007195, 0.007195
88, 1.4022, 0.71517, 1.0057, 0.81868, 0.54715, 0.62308, 0.33477, 1.3397, 0.60256, 1.0128, 0.007162, 0.007162, 0.007162
89, 1.4067, 0.71969, 1.008, 0.8195, 0.54729, 0.62348, 0.33471, 1.3396, 0.60243, 1.0129, 0.007129, 0.007129, 0.007129
90, 1.3997, 0.71888, 1.0106, 0.81971, 0.54727, 0.62343, 0.33495, 1.3394, 0.60221, 1.0129, 0.007096, 0.007096, 0.007096
91, 1.4022, 0.71719, 1.0091, 0.82048, 0.54767, 0.62366, 0.33503, 1.3392, 0.60175, 1.0129, 0.007063, 0.007063, 0.007063
92, 1.3989, 0.71485, 1.0078, 0.81964, 0.54788, 0.62409, 0.33514, 1.3395, 0.60185, 1.013, 0.00703, 0.00703, 0.00703
93, 1.4019, 0.71837, 1.007, 0.81886, 0.54813, 0.62434, 0.33525, 1.3396, 0.6019, 1.0129, 0.006997, 0.006997, 0.006997
94, 1.3981, 0.71338, 1.0055, 0.81984, 0.54822, 0.6247, 0.33542, 1.3391, 0.60186, 1.0127, 0.006964, 0.006964, 0.006964
95, 1.3901, 0.70669, 1.007, 0.82073, 0.54828, 0.62479, 0.3355, 1.3388, 0.60193, 1.0126, 0.006931, 0.006931, 0.006931
96, 1.3936, 0.71641, 1.006, 0.82038, 0.54833, 0.62487, 0.33563, 1.3384, 0.60175, 1.0124, 0.006898, 0.006898, 0.006898
97, 1.4024, 0.71776, 1.008, 0.82021, 0.54825, 0.62516, 0.33575, 1.3384, 0.60125, 1.0122, 0.006865, 0.006865, 0.006865
98, 1.3947, 0.71141, 1.0071, 0.82041, 0.54842, 0.62523, 0.33571, 1.3385, 0.60122, 1.0122, 0.006832, 0.006832, 0.006832
99, 1.3989, 0.71527, 1.006, 0.82181, 0.54768, 0.62527, 0.33585, 1.3382, 0.6009, 1.0121, 0.006799, 0.006799, 0.006799
100, 1.4007, 0.71242, 1.0033, 0.82046, 0.54783, 0.62513, 0.33594, 1.3381, 0.6008, 1.012, 0.006766, 0.006766, 0.006766
101, 1.3874, 0.70685, 1.0052, 0.82125, 0.54761, 0.62544, 0.33618, 1.3377, 0.60064, 1.0118, 0.006733, 0.006733, 0.006733
102, 1.3935, 0.71074, 1.0025, 0.82127, 0.54803, 0.62556, 0.33625, 1.3374, 0.60067, 1.0116, 0.0067, 0.0067, 0.0067
103, 1.4003, 0.71297, 1.0023, 0.82112, 0.54759, 0.62563, 0.33632, 1.3375, 0.6007, 1.0117, 0.006667, 0.006667, 0.006667
104, 1.3879, 0.70909, 1.0018, 0.82122, 0.54754, 0.62568, 0.33641, 1.3374, 0.60048, 1.0116, 0.006634, 0.006634, 0.006634
105, 1.3922, 0.71016, 1.0032, 0.82129, 0.54845, 0.62607, 0.33655, 1.3374, 0.60051, 1.0116, 0.006601, 0.006601, 0.006601
106, 1.3946, 0.71243, 1.0043, 0.8213, 0.54869, 0.62641, 0.33664, 1.3374, 0.6004, 1.0115, 0.006568, 0.006568, 0.006568
107, 1.3827, 0.70472, 1.0035, 0.81958, 0.54931, 0.62647, 0.33678, 1.3374, 0.60012, 1.0115, 0.006535, 0.006535, 0.006535
108, 1.3889, 0.70793, 1.0023, 0.82013, 0.5498, 0.62686, 0.33676, 1.3372, 0.59995, 1.0114, 0.006502, 0.006502, 0.006502
109, 1.3947, 0.70785, 1.0047, 0.82093, 0.54955, 0.62695, 0.33685, 1.337, 0.5999, 1.0114, 0.006469, 0.006469, 0.006469
110, 1.3854, 0.70081, 1.0033, 0.82111, 0.54945, 0.62726, 0.33697, 1.3369, 0.59983, 1.0113, 0.006436, 0.006436, 0.006436
111, 1.4004, 0.7117, 1.0024, 0.82131, 0.54931, 0.62743, 0.33715, 1.3366, 0.59944, 1.0112, 0.006403, 0.006403, 0.006403
112, 1.3912, 0.70301, 1.0046, 0.8217, 0.54985, 0.62777, 0.33721, 1.3367, 0.59945, 1.0112, 0.00637, 0.00637, 0.00637
113, 1.3875, 0.70827, 1.0035, 0.82263, 0.54887, 0.62762, 0.33739, 1.3365, 0.59899, 1.0111, 0.006337, 0.006337, 0.006337
114, 1.3873, 0.70509, 1.005, 0.82242, 0.54896, 0.62767, 0.33738, 1.3363, 0.59898, 1.0111, 0.006304, 0.006304, 0.006304
115, 1.3814, 0.70256, 0.99727, 0.82259, 0.54882, 0.62743, 0.33746, 1.3361, 0.59874, 1.0109, 0.006271, 0.006271, 0.006271
116, 1.3888, 0.70403, 0.99954, 0.8226, 0.54921, 0.62778, 0.33757, 1.3358, 0.59901, 1.0108, 0.006238, 0.006238, 0.006238
117, 1.3896, 0.70697, 1.0004, 0.82318, 0.54945, 0.62767, 0.33751, 1.3357, 0.59913, 1.0107, 0.006205, 0.006205, 0.006205
118, 1.3879, 0.70283, 0.99918, 0.82335, 0.5495, 0.62786, 0.33762, 1.3356, 0.59905, 1.0106, 0.006172, 0.006172, 0.006172
119, 1.3902, 0.70605, 0.99902, 0.82395, 0.54916, 0.62786, 0.3378, 1.3352, 0.59882, 1.0105, 0.006139, 0.006139, 0.006139
120, 1.3832, 0.69787, 1.0025, 0.82258, 0.5499, 0.62806, 0.33784, 1.3352, 0.59865, 1.0105, 0.006106, 0.006106, 0.006106
121, 1.3874, 0.70286, 0.9999, 0.82202, 0.55039, 0.62833, 0.33815, 1.3351, 0.59855, 1.0107, 0.006073, 0.006073, 0.006073
122, 1.3857, 0.70233, 0.99927, 0.82216, 0.5508, 0.629, 0.33831, 1.3352, 0.59858, 1.0107, 0.00604, 0.00604, 0.00604
123, 1.3858, 0.70197, 0.99712, 0.82175, 0.55103, 0.62892, 0.33843, 1.3349, 0.5982, 1.0105, 0.006007, 0.006007, 0.006007
124, 1.3786, 0.69728, 0.99963, 0.82326, 0.55073, 0.62877, 0.33858, 1.3349, 0.59783, 1.0106, 0.005974, 0.005974, 0.005974
125, 1.3786, 0.69268, 0.99773, 0.82349, 0.55068, 0.6297, 0.33879, 1.3349, 0.59766, 1.0104, 0.005941, 0.005941, 0.005941
126, 1.3949, 0.70367, 1.0003, 0.82373, 0.55044, 0.62983, 0.33901, 1.3348, 0.59776, 1.0104, 0.005908, 0.005908, 0.005908
127, 1.3867, 0.70239, 1.0001, 0.82395, 0.55014, 0.62936, 0.33886, 1.3346, 0.59752, 1.0103, 0.005875, 0.005875, 0.005875
128, 1.3803, 0.69582, 0.99711, 0.82454, 0.55068, 0.6298, 0.33921, 1.3342, 0.59731, 1.0103, 0.005842, 0.005842, 0.005842
129, 1.3777, 0.69471, 0.99872, 0.82423, 0.55085, 0.63037, 0.33947, 1.334, 0.59742, 1.0102, 0.005809, 0.005809, 0.005809
130, 1.3741, 0.69255, 1.0009, 0.82481, 0.55054, 0.63002, 0.33908, 1.3341, 0.59731, 1.0102, 0.005776, 0.005776, 0.005776
131, 1.3787, 0.69634, 0.9976, 0.82476, 0.55058, 0.63014, 0.33914, 1.3339, 0.59748, 1.0102, 0.005743, 0.005743, 0.005743
132, 1.3768, 0.69408, 0.99817, 0.82489, 0.55117, 0.63065, 0.3394, 1.3337, 0.59705, 1.01, 0.00571, 0.00571, 0.00571
133, 1.3823, 0.69617, 0.99889, 0.82564, 0.55115, 0.63098, 0.33948, 1.3333, 0.59665, 1.0097, 0.005677, 0.005677, 0.005677
134, 1.3765, 0.69265, 0.99652, 0.82532, 0.55085, 0.63073, 0.33965, 1.333, 0.59661, 1.0096, 0.005644, 0.005644, 0.005644
135, 1.3767, 0.69175, 0.99628, 0.82649, 0.55093, 0.6308, 0.33964, 1.3329, 0.59625, 1.0096, 0.005611, 0.005611, 0.005611
136, 1.3798, 0.69559, 0.99664, 0.82624, 0.55112, 0.63067, 0.33954, 1.3325, 0.59598, 1.0095, 0.005578, 0.005578, 0.005578
137, 1.3749, 0.69064, 0.99435, 0.82642, 0.55147, 0.6311, 0.3395, 1.3329, 0.59591, 1.0096, 0.005545, 0.005545, 0.005545
138, 1.3795, 0.69338, 0.99497, 0.82778, 0.55022, 0.63097, 0.33961, 1.3326, 0.59568, 1.0093, 0.005512, 0.005512, 0.005512
139, 1.3767, 0.69199, 0.9961, 0.8287, 0.55047, 0.63145, 0.33988, 1.3325, 0.59553, 1.0092, 0.005479, 0.005479, 0.005479
140, 1.3773, 0.69169, 0.99446, 0.82719, 0.55128, 0.6316, 0.34031, 1.3322, 0.59524, 1.0089, 0.005446, 0.005446, 0.005446
141, 1.3752, 0.69397, 0.99854, 0.824, 0.55235, 0.63169, 0.3403, 1.332, 0.59498, 1.0088, 0.005413, 0.005413, 0.005413
142, 1.3656, 0.68489, 0.99408, 0.82572, 0.55215, 0.63217, 0.34039, 1.3319, 0.59466, 1.0088, 0.00538, 0.00538, 0.00538
143, 1.3649, 0.68395, 0.99551, 0.82382, 0.55289, 0.63181, 0.34036, 1.3316, 0.59432, 1.0087, 0.005347, 0.005347, 0.005347
144, 1.3734, 0.6892, 0.99345, 0.8243, 0.55279, 0.63185, 0.34027, 1.3316, 0.59408, 1.0087, 0.005314, 0.005314, 0.005314
145, 1.3682, 0.68604, 0.99237, 0.82312, 0.55353, 0.63184, 0.34034, 1.3314, 0.59393, 1.0085, 0.005281, 0.005281, 0.005281
146, 1.3691, 0.68676, 0.99395, 0.82281, 0.55326, 0.63198, 0.34038, 1.3314, 0.59353, 1.0085, 0.005248, 0.005248, 0.005248
147, 1.3712, 0.68716, 0.99482, 0.82282, 0.55397, 0.63189, 0.34038, 1.3314, 0.59346, 1.0083, 0.005215, 0.005215, 0.005215
148, 1.3738, 0.6874, 0.99247, 0.82357, 0.55378, 0.63172, 0.34032, 1.3311, 0.59309, 1.0081, 0.005182, 0.005182, 0.005182
149, 1.3698, 0.68941, 0.99034, 0.82248, 0.55383, 0.63171, 0.34024, 1.331, 0.59295, 1.0079, 0.005149, 0.005149, 0.005149
150, 1.3654, 0.68589, 0.99287, 0.82155, 0.55422, 0.63179, 0.34017, 1.3311, 0.59295, 1.0078, 0.005116, 0.005116, 0.005116
151, 1.3675, 0.6843, 0.99281, 0.82365, 0.55324, 0.63179, 0.34035, 1.3308, 0.59272, 1.0079, 0.005083, 0.005083, 0.005083
152, 1.3683, 0.6835, 0.99382, 0.82408, 0.55304, 0.6317, 0.34042, 1.3307, 0.5924, 1.0078, 0.00505, 0.00505, 0.00505
153, 1.3698, 0.68492, 0.99352, 0.82535, 0.55189, 0.63188, 0.34066, 1.3305, 0.59222, 1.0078, 0.005017, 0.005017, 0.005017
154, 1.3685, 0.68492, 0.99299, 0.82573, 0.55243, 0.63208, 0.34078, 1.3304, 0.59185, 1.0078, 0.004984, 0.004984, 0.004984
155, 1.3626, 0.67738, 0.98902, 0.82532, 0.55294, 0.63223, 0.34076, 1.3305, 0.59177, 1.0078, 0.004951, 0.004951, 0.004951
156, 1.3636, 0.68, 0.99243, 0.82667, 0.55348, 0.63295, 0.34098, 1.3303, 0.59152, 1.0078, 0.004918, 0.004918, 0.004918
157, 1.3594, 0.6781, 0.98973, 0.82475, 0.55373, 0.6325, 0.34107, 1.3302, 0.59135, 1.0076, 0.004885, 0.004885, 0.004885
158, 1.3678, 0.68295, 0.99046, 0.82561, 0.55402, 0.6329, 0.34107, 1.3301, 0.59135, 1.0076, 0.004852, 0.004852, 0.004852
159, 1.3645, 0.6831, 0.99186, 0.82534, 0.55491, 0.63334, 0.34127, 1.3299, 0.59096, 1.0075, 0.004819, 0.004819, 0.004819
160, 1.3605, 0.67788, 0.99112, 0.82656, 0.55392, 0.63306, 0.34116, 1.3301, 0.59072, 1.0076, 0.004786, 0.004786, 0.004786
161, 1.3606, 0.6787, 0.99057, 0.82523, 0.55402, 0.63288, 0.3412, 1.3298, 0.59054, 1.0074, 0.004753, 0.004753, 0.004753
162, 1.3601, 0.68191, 0.98849, 0.82557, 0.55369, 0.63291, 0.34139, 1.3298, 0.58996, 1.0073, 0.00472, 0.00472, 0.00472
163, 1.3638, 0.67852, 0.99231, 0.82577, 0.5542, 0.63352, 0.34162, 1.3296, 0.58984, 1.0073, 0.004687, 0.004687, 0.004687
164, 1.3562, 0.67699, 0.98769, 0.82626, 0.55425, 0.63356, 0.34149, 1.3294, 0.58948, 1.0071, 0.004654, 0.004654, 0.004654
165, 1.3602, 0.67967, 0.99079, 0.82587, 0.55412, 0.63347, 0.34137, 1.3294, 0.58935, 1.0073, 0.004621, 0.004621, 0.004621
166, 1.3535, 0.67376, 0.98673, 0.82726, 0.55436, 0.63382, 0.34173, 1.3293, 0.58908, 1.0073, 0.004588, 0.004588, 0.004588
167, 1.3575, 0.6761, 0.99138, 0.82599, 0.55471, 0.63366, 0.34157, 1.3293, 0.58896, 1.0073, 0.004555, 0.004555, 0.004555
168, 1.3552, 0.67288, 0.9878, 0.82602, 0.55449, 0.63393, 0.34187, 1.3294, 0.58882, 1.0073, 0.004522, 0.004522, 0.004522
169, 1.36, 0.67704, 0.98764, 0.82613, 0.55421, 0.6339, 0.342, 1.3292, 0.58844, 1.0072, 0.004489, 0.004489, 0.004489
170, 1.3552, 0.67637, 0.98979, 0.82649, 0.55343, 0.63351, 0.34228, 1.3293, 0.58816, 1.0072, 0.004456, 0.004456, 0.004456
171, 1.3534, 0.67386, 0.9914, 0.82715, 0.55347, 0.63363, 0.34223, 1.3292, 0.58792, 1.0071, 0.004423, 0.004423, 0.004423
172, 1.351, 0.67177, 0.98792, 0.82616, 0.55343, 0.63372, 0.34239, 1.3292, 0.58784, 1.0071, 0.00439, 0.00439, 0.00439
173, 1.3505, 0.67166, 0.98884, 0.82556, 0.55388, 0.6339, 0.34246, 1.3292, 0.58732, 1.0071, 0.004357, 0.004357, 0.004357
174, 1.3579, 0.67493, 0.9908, 0.82571, 0.55353, 0.63399, 0.34258, 1.329, 0.58704, 1.007, 0.004324, 0.004324, 0.004324
175, 1.3508, 0.67169, 0.98861, 0.82545, 0.55255, 0.6333, 0.34272, 1.3289, 0.58701, 1.0069, 0.004291, 0.004291, 0.004291
176, 1.3554, 0.67474, 0.98644, 0.82523, 0.55275, 0.63357, 0.34269, 1.3289, 0.58682, 1.0069, 0.004258, 0.004258, 0.004258
177, 1.3573, 0.67108, 0.98482, 0.82587, 0.55319, 0.63386, 0.34288, 1.3288, 0.58651, 1.0068, 0.004225, 0.004225, 0.004225
178, 1.3527, 0.67021, 0.98847, 0.82658, 0.55338, 0.63437, 0.34309, 1.3286, 0.58672, 1.0067, 0.004192, 0.004192, 0.004192
179, 1.3435, 0.66617, 0.98638, 0.82482, 0.55368, 0.63379, 0.343, 1.3284, 0.58667, 1.0066, 0.004159, 0.004159, 0.004159
180, 1.3536, 0.67269, 0.98824, 0.82754, 0.5525, 0.63405, 0.34317, 1.328, 0.58654, 1.0065, 0.004126, 0.004126, 0.004126
181, 1.3479, 0.67108, 0.98709, 0.8272, 0.55235, 0.63396, 0.34326, 1.3279, 0.58644, 1.0065, 0.004093, 0.004093, 0.004093
182, 1.3417, 0.66367, 0.98255, 0.82548, 0.55378, 0.63396, 0.34317, 1.3279, 0.58615, 1.0064, 0.00406, 0.00406, 0.00406
183, 1.3506, 0.67055, 0.98606, 0.82441, 0.55384, 0.63389, 0.34303, 1.3276, 0.58593, 1.0062, 0.004027, 0.004027, 0.004027
184, 1.3402, 0.66512, 0.98497, 0.82432, 0.55396, 0.6343, 0.34318, 1.3272, 0.58589, 1.0061, 0.003994, 0.003994, 0.003994
185, 1.3476, 0.66572, 0.98524, 0.82387, 0.55442, 0.63424, 0.34343, 1.327, 0.58582, 1.0059, 0.003961, 0.003961, 0.003961
186, 1.3514, 0.66669, 0.98533, 0.82396, 0.55412, 0.63464, 0.34334, 1.3271, 0.58562, 1.0058, 0.003928, 0.003928, 0.003928
187, 1.3481, 0.66949, 0.98588, 0.82506, 0.55397, 0.63453, 0.34357, 1.3272, 0.58563, 1.0059, 0.003895, 0.003895, 0.003895
188, 1.3486, 0.66407, 0.98386, 0.824, 0.55413, 0.63456, 0.34367, 1.3271, 0.58584, 1.0058, 0.003862, 0.003862, 0.003862
189, 1.3432, 0.6625, 0.98552, 0.8245, 0.55402, 0.63437, 0.34367, 1.327, 0.58587, 1.0058, 0.003829, 0.003829, 0.003829
190, 1.3464, 0.6655, 0.98463, 0.82247, 0.55494, 0.63514, 0.34364, 1.327, 0.58567, 1.0057, 0.003796, 0.003796, 0.003796
191, 1.3392, 0.66056, 0.98377, 0.82379, 0.55427, 0.63507, 0.34372, 1.3268, 0.58581, 1.0056, 0.003763, 0.003763, 0.003763
192, 1.3409, 0.66068, 0.98347, 0.8232, 0.55474, 0.63537, 0.34361, 1.3266, 0.58574, 1.0055, 0.00373, 0.00373, 0.00373
193, 1.3443, 0.66483, 0.98454, 0.82259, 0.55516, 0.63514, 0.34364, 1.3266, 0.58565, 1.0055, 0.003697, 0.003697, 0.003697
194, 1.3424, 0.66293, 0.98034, 0.82476, 0.55474, 0.63523, 0.34369, 1.3264, 0.58597, 1.0055, 0.003664, 0.003664, 0.003664
195, 1.3364, 0.66169, 0.98331, 0.82378, 0.55515, 0.63541, 0.34383, 1.3262, 0.58583, 1.0054, 0.003631, 0.003631, 0.003631
196, 1.3357, 0.65875, 0.98083, 0.82561, 0.55466, 0.63539, 0.34401, 1.3264, 0.58553, 1.0055, 0.003598, 0.003598, 0.003598
197, 1.3376, 0.66148, 0.98121, 0.82485, 0.55535, 0.63549, 0.34413, 1.3264, 0.58569, 1.0054, 0.003565, 0.003565, 0.003565
198, 1.3356, 0.65735, 0.98116, 0.82474, 0.5555, 0.63568, 0.34423, 1.3265, 0.58561, 1.0055, 0.003532, 0.003532, 0.003532
199, 1.3422, 0.66173, 0.98166, 0.82604, 0.55505, 0.63582, 0.34425, 1.3267, 0.58572, 1.0054, 0.003499, 0.003499, 0.003499
200, 1.3381, 0.65961, 0.98269, 0.82542, 0.55569, 0.6361, 0.34465, 1.3266, 0.58572, 1.0055, 0.003466, 0.003466, 0.003466
201, 1.3346, 0.65792, 0.98265, 0.82729, 0.5551, 0.63659, 0.34436, 1.3267, 0.58536, 1.0055, 0.003433, 0.003433, 0.003433
202, 1.3293, 0.65254, 0.97846, 0.82559, 0.5556, 0.63664, 0.34472, 1.3267, 0.58525, 1.0055, 0.0034, 0.0034, 0.0034
203, 1.3385, 0.65796, 0.97954, 0.82573, 0.55525, 0.63674, 0.34476, 1.3268, 0.5849, 1.0054, 0.003367, 0.003367, 0.003367
204, 1.3289, 0.65451, 0.97813, 0.82564, 0.55535, 0.63653, 0.34502, 1.3268, 0.58477, 1.0054, 0.003334, 0.003334, 0.003334
205, 1.3332, 0.65623, 0.97782, 0.827, 0.55499, 0.63665, 0.34483, 1.3269, 0.58471, 1.0053, 0.003301, 0.003301, 0.003301
206, 1.3321, 0.65534, 0.97912, 0.82734, 0.55445, 0.63653, 0.34499, 1.3269, 0.58478, 1.0054, 0.003268, 0.003268, 0.003268
207, 1.3363, 0.65709, 0.9789, 0.82838, 0.55445, 0.63706, 0.34501, 1.3267, 0.58445, 1.0053, 0.003235, 0.003235, 0.003235
208, 1.3293, 0.65415, 0.97973, 0.82761, 0.55481, 0.63673, 0.34475, 1.327, 0.58425, 1.0053, 0.003202, 0.003202, 0.003202
209, 1.3353, 0.65727, 0.97824, 0.82762, 0.55529, 0.63693, 0.34461, 1.3271, 0.58431, 1.0052, 0.003169, 0.003169, 0.003169
210, 1.3279, 0.65116, 0.97499, 0.82611, 0.55597, 0.63706, 0.34464, 1.3269, 0.58407, 1.005, 0.003136, 0.003136, 0.003136
211, 1.3313, 0.65234, 0.97816, 0.82626, 0.55579, 0.63695, 0.34471, 1.3268, 0.58389, 1.0048, 0.003103, 0.003103, 0.003103
212, 1.3289, 0.65224, 0.98015, 0.82649, 0.55558, 0.63689, 0.34509, 1.3269, 0.58408, 1.0048, 0.00307, 0.00307, 0.00307
213, 1.3242, 0.64951, 0.97583, 0.82574, 0.5562, 0.63714, 0.34496, 1.3267, 0.58383, 1.0047, 0.003037, 0.003037, 0.003037
214, 1.3254, 0.65301, 0.97522, 0.82596, 0.55604, 0.6373, 0.34479, 1.3268, 0.58347, 1.0046, 0.003004, 0.003004, 0.003004
215, 1.3273, 0.65115, 0.97424, 0.82477, 0.55617, 0.63733, 0.34503, 1.3268, 0.58333, 1.0045, 0.002971, 0.002971, 0.002971
216, 1.3198, 0.64455, 0.97218, 0.82528, 0.55599, 0.63721, 0.34493, 1.3269, 0.58326, 1.0044, 0.002938, 0.002938, 0.002938
217, 1.3197, 0.64555, 0.97685, 0.82458, 0.55667, 0.63771, 0.34522, 1.3266, 0.58292, 1.0043, 0.002905, 0.002905, 0.002905
218, 1.3192, 0.64702, 0.97282, 0.82304, 0.55778, 0.63783, 0.34518, 1.3269, 0.58265, 1.0042, 0.002872, 0.002872, 0.002872
219, 1.3155, 0.64615, 0.97342, 0.82377, 0.55726, 0.63781, 0.34542, 1.3271, 0.58272, 1.0043, 0.002839, 0.002839, 0.002839
220, 1.3172, 0.64597, 0.97521, 0.82352, 0.55805, 0.63805, 0.34554, 1.3272, 0.58258, 1.0043, 0.002806, 0.002806, 0.002806
221, 1.3197, 0.64495, 0.97415, 0.82281, 0.5582, 0.63824, 0.34567, 1.3271, 0.58209, 1.0043, 0.002773, 0.002773, 0.002773
222, 1.3155, 0.64493, 0.97286, 0.82303, 0.5581, 0.63792, 0.34578, 1.3272, 0.58218, 1.0042, 0.00274, 0.00274, 0.00274
223, 1.3058, 0.64009, 0.97206, 0.8241, 0.55785, 0.63828, 0.34614, 1.3272, 0.58238, 1.0042, 0.002707, 0.002707, 0.002707
224, 1.3145, 0.64162, 0.97335, 0.82366, 0.55811, 0.63852, 0.34642, 1.3269, 0.5821, 1.004, 0.002674, 0.002674, 0.002674
225, 1.3184, 0.64613, 0.97399, 0.82315, 0.55839, 0.63871, 0.34641, 1.3265, 0.5821, 1.0039, 0.002641, 0.002641, 0.002641
226, 1.319, 0.64176, 0.97114, 0.82401, 0.55806, 0.639, 0.34655, 1.3265, 0.58218, 1.0038, 0.002608, 0.002608, 0.002608
227, 1.3133, 0.64004, 0.97166, 0.824, 0.55785, 0.63907, 0.34642, 1.3264, 0.58216, 1.0038, 0.002575, 0.002575, 0.002575
228, 1.3172, 0.64167, 0.97184, 0.824, 0.558, 0.63925, 0.34689, 1.3261, 0.58202, 1.0039, 0.002542, 0.002542, 0.002542
229, 1.3072, 0.63918, 0.97226, 0.82452, 0.55775, 0.6391, 0.34703, 1.3261, 0.58201, 1.0039, 0.002509, 0.002509, 0.002509
230, 1.3166, 0.63981, 0.9714, 0.82447, 0.55829, 0.6395, 0.34724, 1.3259, 0.58193, 1.0038, 0.002476, 0.002476, 0.002476
231, 1.3148, 0.64031, 0.97158, 0.82434, 0.55805, 0.63943, 0.3472, 1.326, 0.58157, 1.0038, 0.002443, 0.002443, 0.002443
232, 1.3059, 0.63532, 0.96838, 0.82427, 0.55883, 0.63974, 0.34757, 1.3255, 0.58141, 1.0036, 0.00241, 0.00241, 0.00241
233, 1.3115, 0.63841, 0.97033, 0.82429, 0.55869, 0.63968, 0.34763, 1.3257, 0.58155, 1.0037, 0.002377, 0.002377, 0.002377
234, 1.3013, 0.63355, 0.96933, 0.82559, 0.55816, 0.63973, 0.34783, 1.3253, 0.5814, 1.0035, 0.002344, 0.002344, 0.002344
235, 1.299, 0.6326, 0.96709, 0.82627, 0.5581, 0.63965, 0.34799, 1.3256, 0.58135, 1.0035, 0.002311, 0.002311, 0.002311
236, 1.3036, 0.63394, 0.96996, 0.82546, 0.55918, 0.63993, 0.34827, 1.3251, 0.58139, 1.0035, 0.002278, 0.002278, 0.002278
237, 1.3048, 0.6356, 0.96859, 0.82497, 0.56021, 0.64046, 0.34891, 1.3249, 0.58146, 1.0034, 0.002245, 0.002245, 0.002245
238, 1.3006, 0.63233, 0.96996, 0.82466, 0.56035, 0.64074, 0.34895, 1.3249, 0.58126, 1.0034, 0.002212, 0.002212, 0.002212
239, 1.3131, 0.63857, 0.97315, 0.82394, 0.56065, 0.64074, 0.34898, 1.3249, 0.58141, 1.0035, 0.002179, 0.002179, 0.002179
240, 1.3108, 0.63706, 0.97158, 0.82427, 0.56075, 0.64092, 0.34922, 1.3248, 0.58127, 1.0035, 0.002146, 0.002146, 0.002146
241, 1.2968, 0.63298, 0.96814, 0.82427, 0.56047, 0.64103, 0.34931, 1.3249, 0.58138, 1.0036, 0.002113, 0.002113, 0.002113
242, 1.298, 0.63112, 0.96519, 0.82379, 0.5605, 0.64119, 0.34932, 1.3248, 0.58139, 1.0036, 0.00208, 0.00208, 0.00208
243, 1.2945, 0.62723, 0.9649, 0.82462, 0.56026, 0.64131, 0.34936, 1.3249, 0.58146, 1.0035, 0.002047, 0.002047, 0.002047
244, 1.2958, 0.62663, 0.96582, 0.82466, 0.56021, 0.6413, 0.34952, 1.3247, 0.58134, 1.0034, 0.002014, 0.002014, 0.002014
245, 1.3012, 0.62934, 0.96644, 0.82466, 0.56013, 0.64147, 0.34946, 1.325, 0.5814, 1.0036, 0.001981, 0.001981, 0.001981
246, 1.294, 0.62692, 0.96783, 0.8263, 0.55913, 0.64104, 0.34912, 1.3253, 0.58135, 1.0036, 0.001948, 0.001948, 0.001948
247, 1.297, 0.62833, 0.96434, 0.82494, 0.55967, 0.64113, 0.34928, 1.3255, 0.5813, 1.0036, 0.001915, 0.001915, 0.001915
248, 1.2916, 0.62731, 0.9652, 0.82662, 0.55912, 0.64142, 0.34921, 1.3255, 0.58125, 1.0036, 0.001882, 0.001882, 0.001882
249, 1.2874, 0.62193, 0.96326, 0.82658, 0.55993, 0.64167, 0.34918, 1.3261, 0.58143, 1.0037, 0.001849, 0.001849, 0.001849
250, 1.2994, 0.62638, 0.96512, 0.82618, 0.56023, 0.64205, 0.34918, 1.3261, 0.58162, 1.0037, 0.001816, 0.001816, 0.001816
251, 1.293, 0.62706, 0.96573, 0.82672, 0.56055, 0.64226, 0.34939, 1.3261, 0.58145, 1.0038, 0.001783, 0.001783, 0.001783
252, 1.2876, 0.62387, 0.96027, 0.8271, 0.55957, 0.64236, 0.34923, 1.3262, 0.58179, 1.0037, 0.00175, 0.00175, 0.00175
253, 1.2878, 0.62273, 0.96041, 0.82664, 0.55922, 0.64211, 0.34928, 1.3264, 0.58163, 1.0037, 0.001717, 0.001717, 0.001717
254, 1.2917, 0.62056, 0.96255, 0.82564, 0.56021, 0.642, 0.34924, 1.3264, 0.58157, 1.0038, 0.001684, 0.001684, 0.001684
255, 1.292, 0.62485, 0.96082, 0.8261, 0.55993, 0.64192, 0.3491, 1.3265, 0.58147, 1.0038, 0.001651, 0.001651, 0.001651
256, 1.2835, 0.62036, 0.96122, 0.82533, 0.55996, 0.6419, 0.34927, 1.3264, 0.58141, 1.0038, 0.001618, 0.001618, 0.001618
257, 1.2875, 0.62276, 0.95954, 0.82592, 0.55991, 0.64201, 0.34945, 1.3264, 0.58152, 1.0038, 0.001585, 0.001585, 0.001585
258, 1.2869, 0.61985, 0.96011, 0.82681, 0.55996, 0.64185, 0.3492, 1.3265, 0.58145, 1.0037, 0.001552, 0.001552, 0.001552
259, 1.274, 0.61597, 0.9602, 0.82617, 0.56021, 0.64191, 0.34949, 1.3267, 0.58119, 1.0038, 0.001519, 0.001519, 0.001519
260, 1.2888, 0.62277, 0.96148, 0.8263, 0.56023, 0.6422, 0.3494, 1.3267, 0.58122, 1.0037, 0.001486, 0.001486, 0.001486
261, 1.2826, 0.61716, 0.96207, 0.82674, 0.56016, 0.6422, 0.34924, 1.3269, 0.58129, 1.0038, 0.001453, 0.001453, 0.001453
262, 1.279, 0.61271, 0.95932, 0.82688, 0.56001, 0.64199, 0.34946, 1.3269, 0.58127, 1.0039, 0.00142, 0.00142, 0.00142
263, 1.2758, 0.61523, 0.9586, 0.82744, 0.56006, 0.64238, 0.34951, 1.327, 0.5811, 1.004, 0.001387, 0.001387, 0.001387
264, 1.2824, 0.61845, 0.95818, 0.8279, 0.55942, 0.64239, 0.34957, 1.3272, 0.5813, 1.0039, 0.001354, 0.001354, 0.001354
265, 1.2762, 0.61366, 0.95706, 0.8287, 0.55929, 0.64228, 0.34947, 1.3272, 0.58107, 1.0039, 0.001321, 0.001321, 0.001321
266, 1.2807, 0.61507, 0.95664, 0.82774, 0.55952, 0.64258, 0.34954, 1.3272, 0.58129, 1.0039, 0.001288, 0.001288, 0.001288
267, 1.2714, 0.60982, 0.95798, 0.82847, 0.55928, 0.64241, 0.34979, 1.3271, 0.58129, 1.0038, 0.001255, 0.001255, 0.001255
268, 1.2727, 0.61025, 0.95609, 0.83076, 0.55888, 0.64255, 0.34974, 1.3273, 0.58119, 1.0039, 0.001222, 0.001222, 0.001222
269, 1.276, 0.61143, 0.95842, 0.82965, 0.55893, 0.64245, 0.34978, 1.3276, 0.58121, 1.004, 0.001189, 0.001189, 0.001189
270, 1.2735, 0.61147, 0.95654, 0.82926, 0.55863, 0.64251, 0.3499, 1.3277, 0.58163, 1.0039, 0.001156, 0.001156, 0.001156
271, 1.2714, 0.60847, 0.95571, 0.82997, 0.55854, 0.64248, 0.34989, 1.3276, 0.58144, 1.0038, 0.001123, 0.001123, 0.001123
272, 1.2699, 0.61123, 0.95451, 0.82883, 0.55885, 0.64262, 0.35004, 1.3277, 0.58135, 1.0038, 0.00109, 0.00109, 0.00109
273, 1.2736, 0.61214, 0.95547, 0.8288, 0.55873, 0.64279, 0.34999, 1.3282, 0.5814, 1.0039, 0.001057, 0.001057, 0.001057
274, 1.2728, 0.60935, 0.95188, 0.82797, 0.55938, 0.64302, 0.34996, 1.3284, 0.58143, 1.0038, 0.001024, 0.001024, 0.001024
275, 1.2681, 0.60683, 0.95302, 0.829, 0.55918, 0.64317, 0.35002, 1.3285, 0.58132, 1.0038, 0.000991, 0.000991, 0.000991
276, 1.2669, 0.60752, 0.95047, 0.82944, 0.55911, 0.64306, 0.35004, 1.3284, 0.5811, 1.0038, 0.000958, 0.000958, 0.000958
277, 1.2623, 0.60315, 0.95131, 0.8294, 0.55908, 0.64305, 0.34989, 1.3291, 0.58142, 1.0038, 0.000925, 0.000925, 0.000925
278, 1.2637, 0.60384, 0.95263, 0.82986, 0.55886, 0.64322, 0.35017, 1.3288, 0.58149, 1.0037, 0.000892, 0.000892, 0.000892
279, 1.2565, 0.60197, 0.9519, 0.82912, 0.55933, 0.64337, 0.35015, 1.3289, 0.58174, 1.0037, 0.000859, 0.000859, 0.000859
280, 1.2616, 0.60382, 0.95214, 0.82988, 0.55939, 0.64385, 0.35024, 1.329, 0.58166, 1.0037, 0.000826, 0.000826, 0.000826
281, 1.2603, 0.60163, 0.95026, 0.83005, 0.55893, 0.64375, 0.35017, 1.3292, 0.5818, 1.0037, 0.000793, 0.000793, 0.000793
282, 1.258, 0.60086, 0.95107, 0.83006, 0.55914, 0.64401, 0.35048, 1.3293, 0.58163, 1.0038, 0.00076, 0.00076, 0.00076
283, 1.259, 0.60176, 0.9523, 0.82992, 0.55928, 0.64398, 0.3504, 1.3294, 0.58141, 1.0038, 0.000727, 0.000727, 0.000727
284, 1.2575, 0.59749, 0.95011, 0.83031, 0.55918, 0.64389, 0.35026, 1.3295, 0.5815, 1.0038, 0.000694, 0.000694, 0.000694
285, 1.2563, 0.5975, 0.94853, 0.82958, 0.55977, 0.6441, 0.35033, 1.3295, 0.58122, 1.0037, 0.000661, 0.000661, 0.000661
286, 1.2556, 0.59814, 0.95015, 0.83046, 0.55928, 0.64411, 0.35052, 1.3297, 0.58101, 1.0038, 0.000628, 0.000628, 0.000628
287, 1.2569, 0.59836, 0.94949, 0.83075, 0.55859, 0.64377, 0.35045, 1.3298, 0.58096, 1.0038, 0.000595, 0.000595, 0.000595
288, 1.2467, 0.59551, 0.94928, 0.83142, 0.5582, 0.64347, 0.35043, 1.3301, 0.581, 1.0039, 0.000562, 0.000562, 0.000562
289, 1.2488, 0.59376, 0.94848, 0.83046, 0.5586, 0.64385, 0.35029, 1.3302, 0.58103, 1.0039, 0.000529, 0.000529, 0.000529
290, 1.2512, 0.59594, 0.94861, 0.83122, 0.5579, 0.64364, 0.35038, 1.3303, 0.58092, 1.0039, 0.000496, 0.000496, 0.000496
291, 1.2183, 0.55915, 0.94806, 0.83069, 0.55834, 0.64381, 0.35052, 1.3306, 0.58101, 1.004, 0.000463, 0.000463, 0.000463
292, 1.2135, 0.55606, 0.94714, 0.83051, 0.55849, 0.64382, 0.35047, 1.3307, 0.58106, 1.004, 0.00043, 0.00043, 0.00043
293, 1.2068, 0.5524, 0.94658, 0.83093, 0.558, 0.64399, 0.35041, 1.3307, 0.58107, 1.004, 0.000397, 0.000397, 0.000397
294, 1.2077, 0.55273, 0.94783, 0.83089, 0.5579, 0.64375, 0.35043, 1.3308, 0.58095, 1.0041, 0.000364, 0.000364, 0.000364
295, 1.2061, 0.55151, 0.94596, 0.83098, 0.55731, 0.64381, 0.35045, 1.3312, 0.58103, 1.0042, 0.000331, 0.000331, 0.000331
296, 1.1994, 0.54712, 0.94586, 0.83113, 0.55809, 0.64418, 0.35057, 1.3312, 0.5812, 1.0044, 0.000298, 0.000298, 0.000298
297, 1.1969, 0.54597, 0.94278, 0.83107, 0.55785, 0.64399, 0.35048, 1.3314, 0.5811, 1.0044, 0.000265, 0.000265, 0.000265
298, 1.1968, 0.54484, 0.94344, 0.83156, 0.55785, 0.64394, 0.35043, 1.3316, 0.5812, 1.0045, 0.000232, 0.000232, 0.000232
299, 1.1948, 0.54383, 0.9427, 0.83074, 0.5579, 0.64404, 0.35051, 1.3318, 0.5812, 1.0046, 0.000199, 0.000199, 0.000199
300, 1.1984, 0.54449, 0.94156, 0.83123, 0.55839, 0.64426, 0.35051, 1.3321, 0.5813, 1.0047, 0.000166, 0.000166, 0.000166
1 epoch train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B) metrics/mAP50(B) metrics/mAP50-95(B) val/box_loss val/cls_loss val/dfl_loss lr/pg0 lr/pg1 lr/pg2
2 1 1.8366 1.6172 1.23 0.73216 0.4057 0.45729 0.22342 1.6173 1.0335 1.1176 0.0033324 0.0033324 0.0033324
3 2 1.6996 1.1415 1.1168 0.74462 0.42432 0.48077 0.23546 1.5982 0.9299 1.0967 0.0066437 0.0066437 0.0066437
4 3 1.6942 1.0916 1.1144 0.75214 0.41787 0.48389 0.24459 1.5876 0.91869 1.1124 0.009933 0.009933 0.009933
5 4 1.7002 1.0721 1.1165 0.7459 0.43503 0.49319 0.24855 1.5479 0.88047 1.0963 0.009901 0.009901 0.009901
6 5 1.6564 1.0036 1.1029 0.75251 0.44131 0.50205 0.25468 1.526 0.86462 1.0938 0.009901 0.009901 0.009901
7 6 1.6158 0.96155 1.0948 0.77936 0.44961 0.51763 0.26644 1.5144 0.82764 1.092 0.009868 0.009868 0.009868
8 7 1.6037 0.94048 1.0802 0.77111 0.46326 0.52994 0.27099 1.5069 0.79548 1.0745 0.009835 0.009835 0.009835
9 8 1.5843 0.92476 1.0833 0.7791 0.46007 0.52712 0.27167 1.4899 0.78321 1.079 0.009802 0.009802 0.009802
10 9 1.5674 0.89715 1.0711 0.77923 0.46449 0.53776 0.28055 1.47 0.76636 1.068 0.009769 0.009769 0.009769
11 10 1.5512 0.87952 1.0653 0.77521 0.47389 0.54483 0.28164 1.4713 0.7573 1.0651 0.009736 0.009736 0.009736
12 11 1.5439 0.87521 1.0637 0.77805 0.48045 0.55307 0.28919 1.4537 0.74462 1.0681 0.009703 0.009703 0.009703
13 12 1.5349 0.86626 1.0638 0.79144 0.48473 0.55704 0.2906 1.4447 0.74001 1.0585 0.00967 0.00967 0.00967
14 13 1.5389 0.8634 1.0593 0.79582 0.48468 0.55985 0.29173 1.4378 0.72863 1.0536 0.009637 0.009637 0.009637
15 14 1.527 0.85232 1.0575 0.79959 0.48924 0.56194 0.29369 1.4325 0.72248 1.0529 0.009604 0.009604 0.009604
16 15 1.5167 0.83858 1.0472 0.79612 0.50162 0.57528 0.30143 1.4291 0.70915 1.0517 0.009571 0.009571 0.009571
17 16 1.511 0.84003 1.0572 0.79682 0.49903 0.57238 0.29949 1.4255 0.70613 1.0467 0.009538 0.009538 0.009538
18 17 1.5004 0.82738 1.0452 0.80276 0.50093 0.57732 0.30315 1.4102 0.70162 1.04 0.009505 0.009505 0.009505
19 18 1.4945 0.82371 1.046 0.80777 0.5 0.57768 0.30523 1.4061 0.69825 1.0444 0.009472 0.009472 0.009472
20 19 1.4989 0.82164 1.049 0.80186 0.50044 0.57537 0.3031 1.4107 0.69426 1.0475 0.009439 0.009439 0.009439
21 20 1.4915 0.81587 1.0433 0.80456 0.51095 0.58619 0.30709 1.4054 0.68744 1.0408 0.009406 0.009406 0.009406
22 21 1.4793 0.80911 1.0439 0.80117 0.50482 0.58149 0.30702 1.4053 0.68784 1.0416 0.009373 0.009373 0.009373
23 22 1.4898 0.81082 1.045 0.80043 0.50707 0.5833 0.30586 1.4035 0.67973 1.0387 0.00934 0.00934 0.00934
24 23 1.4828 0.80697 1.0414 0.80335 0.51238 0.58912 0.31067 1.3903 0.67495 1.0341 0.009307 0.009307 0.009307
25 24 1.4826 0.80751 1.0396 0.79396 0.51665 0.58972 0.31185 1.3907 0.67116 1.0299 0.009274 0.009274 0.009274
26 25 1.469 0.79728 1.037 0.80462 0.51567 0.59328 0.31328 1.3887 0.66722 1.0345 0.009241 0.009241 0.009241
27 26 1.4824 0.80153 1.0417 0.8068 0.51665 0.59521 0.31561 1.385 0.66532 1.0326 0.009208 0.009208 0.009208
28 27 1.4735 0.79673 1.0361 0.81817 0.51434 0.59627 0.3157 1.3824 0.6601 1.0295 0.009175 0.009175 0.009175
29 28 1.4669 0.79048 1.0345 0.80737 0.51793 0.59457 0.31481 1.3863 0.6613 1.0321 0.009142 0.009142 0.009142
30 29 1.478 0.79455 1.0352 0.80684 0.51922 0.59626 0.31542 1.3801 0.65883 1.0294 0.009109 0.009109 0.009109
31 30 1.4666 0.78563 1.0305 0.81345 0.51743 0.59667 0.31766 1.3758 0.64901 1.0265 0.009076 0.009076 0.009076
32 31 1.4614 0.785 1.0308 0.80573 0.52441 0.60194 0.31961 1.3724 0.6502 1.0264 0.009043 0.009043 0.009043
33 32 1.4634 0.78495 1.03 0.81169 0.51881 0.59713 0.31653 1.3714 0.64888 1.0239 0.00901 0.00901 0.00901
34 33 1.4562 0.7776 1.0319 0.80824 0.5239 0.60092 0.31811 1.3725 0.6479 1.0243 0.008977 0.008977 0.008977
35 34 1.4608 0.78239 1.0343 0.8152 0.5246 0.60352 0.32082 1.3738 0.64521 1.0266 0.008944 0.008944 0.008944
36 35 1.4568 0.77935 1.0331 0.81581 0.52456 0.60224 0.31993 1.3704 0.64374 1.0275 0.008911 0.008911 0.008911
37 36 1.4511 0.76946 1.0274 0.8176 0.52902 0.60728 0.32229 1.366 0.64142 1.0232 0.008878 0.008878 0.008878
38 37 1.45 0.76984 1.0284 0.8169 0.52652 0.60466 0.32245 1.3641 0.63698 1.0221 0.008845 0.008845 0.008845
39 38 1.4495 0.76749 1.0282 0.8147 0.52902 0.60759 0.32213 1.3639 0.63651 1.0216 0.008812 0.008812 0.008812
40 39 1.447 0.76387 1.0268 0.82156 0.52726 0.60757 0.32386 1.3625 0.63241 1.0208 0.008779 0.008779 0.008779
41 40 1.4438 0.76333 1.0252 0.81094 0.5334 0.61003 0.32494 1.3625 0.63078 1.0217 0.008746 0.008746 0.008746
42 41 1.4421 0.76169 1.0255 0.81466 0.53125 0.60807 0.32363 1.361 0.63154 1.0219 0.008713 0.008713 0.008713
43 42 1.4381 0.76428 1.0251 0.8128 0.53541 0.61123 0.32527 1.3571 0.63195 1.0211 0.00868 0.00868 0.00868
44 43 1.4432 0.76062 1.0273 0.809 0.53595 0.61143 0.32473 1.359 0.62995 1.0218 0.008647 0.008647 0.008647
45 44 1.4449 0.76623 1.0273 0.80624 0.53644 0.61108 0.32432 1.3596 0.62857 1.0207 0.008614 0.008614 0.008614
46 45 1.4417 0.76109 1.0217 0.81111 0.53605 0.6127 0.32521 1.3593 0.62836 1.0198 0.008581 0.008581 0.008581
47 46 1.4321 0.75374 1.0216 0.81368 0.5364 0.61196 0.32574 1.3587 0.62687 1.0201 0.008548 0.008548 0.008548
48 47 1.446 0.7608 1.0226 0.80926 0.53914 0.61401 0.32651 1.3554 0.62499 1.0183 0.008515 0.008515 0.008515
49 48 1.4349 0.75259 1.0236 0.8108 0.53845 0.61365 0.32693 1.3533 0.62398 1.0167 0.008482 0.008482 0.008482
50 49 1.4363 0.75445 1.0237 0.81126 0.53949 0.61408 0.32765 1.3524 0.62248 1.0177 0.008449 0.008449 0.008449
51 50 1.4324 0.74858 1.0226 0.81467 0.53841 0.61406 0.32794 1.352 0.62139 1.0183 0.008416 0.008416 0.008416
52 51 1.4338 0.75026 1.0216 0.81477 0.5388 0.61559 0.3293 1.3514 0.62012 1.0187 0.008383 0.008383 0.008383
53 52 1.4261 0.74897 1.0223 0.81789 0.53772 0.61498 0.32866 1.3509 0.61872 1.0174 0.00835 0.00835 0.00835
54 53 1.4313 0.74894 1.021 0.81446 0.53791 0.6149 0.32906 1.3498 0.6189 1.0167 0.008317 0.008317 0.008317
55 54 1.4374 0.75515 1.0203 0.81533 0.53649 0.61463 0.32942 1.3488 0.61815 1.0159 0.008284 0.008284 0.008284
56 55 1.4341 0.75004 1.02 0.81816 0.53693 0.61413 0.32926 1.348 0.61723 1.0161 0.008251 0.008251 0.008251
57 56 1.4227 0.74446 1.0193 0.82126 0.53624 0.61425 0.3296 1.3484 0.61657 1.0171 0.008218 0.008218 0.008218
58 57 1.4275 0.7423 1.0168 0.82008 0.53633 0.61454 0.33001 1.3468 0.61503 1.0164 0.008185 0.008185 0.008185
59 58 1.4282 0.74306 1.0176 0.81829 0.53909 0.61599 0.33017 1.3465 0.61423 1.0163 0.008152 0.008152 0.008152
60 59 1.4247 0.73917 1.015 0.8196 0.53988 0.61715 0.33048 1.3466 0.61296 1.0165 0.008119 0.008119 0.008119
61 60 1.4332 0.74758 1.017 0.82261 0.53908 0.61859 0.33099 1.3464 0.61228 1.0161 0.008086 0.008086 0.008086
62 61 1.4205 0.74213 1.0188 0.82373 0.53919 0.61875 0.33134 1.3464 0.61194 1.0162 0.008053 0.008053 0.008053
63 62 1.425 0.74274 1.0166 0.82279 0.53968 0.61843 0.33131 1.347 0.61144 1.0159 0.00802 0.00802 0.00802
64 63 1.4291 0.74075 1.017 0.81851 0.54154 0.61889 0.3315 1.3469 0.61152 1.0161 0.007987 0.007987 0.007987
65 64 1.4219 0.74298 1.0177 0.82097 0.54026 0.61851 0.33164 1.3466 0.61163 1.016 0.007954 0.007954 0.007954
66 65 1.4266 0.73952 1.017 0.81926 0.54022 0.6187 0.33209 1.3463 0.61171 1.0163 0.007921 0.007921 0.007921
67 66 1.4278 0.74037 1.0147 0.81862 0.54081 0.61909 0.33213 1.3457 0.61062 1.0158 0.007888 0.007888 0.007888
68 67 1.4183 0.73243 1.0126 0.81686 0.54248 0.61944 0.33257 1.3448 0.60959 1.0152 0.007855 0.007855 0.007855
69 68 1.4215 0.73568 1.0146 0.81829 0.54322 0.62038 0.33265 1.3439 0.60876 1.015 0.007822 0.007822 0.007822
70 69 1.4224 0.7344 1.0136 0.81864 0.54334 0.62044 0.333 1.3438 0.60831 1.015 0.007789 0.007789 0.007789
71 70 1.416 0.7341 1.0113 0.81974 0.54415 0.62089 0.33331 1.3433 0.60708 1.0146 0.007756 0.007756 0.007756
72 71 1.4174 0.7324 1.0141 0.82096 0.5444 0.62096 0.33341 1.3424 0.60636 1.0143 0.007723 0.007723 0.007723
73 72 1.4189 0.73294 1.011 0.81981 0.54518 0.62188 0.33355 1.3424 0.60576 1.0144 0.00769 0.00769 0.00769
74 73 1.4138 0.73535 1.0157 0.81997 0.54377 0.62134 0.33364 1.342 0.60532 1.0143 0.007657 0.007657 0.007657
75 74 1.4145 0.7302 1.0136 0.81922 0.54459 0.62154 0.33371 1.3424 0.60538 1.0144 0.007624 0.007624 0.007624
76 75 1.4123 0.72954 1.0118 0.81753 0.54651 0.62168 0.33367 1.3424 0.60525 1.0142 0.007591 0.007591 0.007591
77 76 1.4134 0.73017 1.0138 0.81633 0.54607 0.62139 0.33364 1.3417 0.60494 1.0138 0.007558 0.007558 0.007558
78 77 1.4047 0.7226 1.009 0.81883 0.54415 0.62148 0.33379 1.3417 0.60449 1.0139 0.007525 0.007525 0.007525
79 78 1.4129 0.73034 1.0152 0.81776 0.54474 0.62172 0.33386 1.3414 0.60429 1.0137 0.007492 0.007492 0.007492
80 79 1.4083 0.72722 1.0145 0.8189 0.54452 0.62164 0.33389 1.3411 0.60379 1.0136 0.007459 0.007459 0.007459
81 80 1.4136 0.73059 1.0134 0.81713 0.54626 0.62225 0.33425 1.3407 0.60362 1.0134 0.007426 0.007426 0.007426
82 81 1.4155 0.72986 1.0126 0.81597 0.54607 0.6218 0.33399 1.3406 0.60358 1.0133 0.007393 0.007393 0.007393
83 82 1.4049 0.72214 1.0108 0.81612 0.54587 0.62191 0.33446 1.3407 0.60367 1.0133 0.00736 0.00736 0.00736
84 83 1.4091 0.72572 1.0106 0.8181 0.54601 0.62233 0.33441 1.3407 0.60404 1.0132 0.007327 0.007327 0.007327
85 84 1.4115 0.7256 1.0107 0.81762 0.54695 0.62245 0.33442 1.3408 0.6035 1.0133 0.007294 0.007294 0.007294
86 85 1.4051 0.72315 1.0097 0.81982 0.54646 0.62276 0.33442 1.3406 0.60327 1.0132 0.007261 0.007261 0.007261
87 86 1.4086 0.72298 1.0084 0.81937 0.5468 0.6231 0.33452 1.3401 0.60288 1.0131 0.007228 0.007228 0.007228
88 87 1.4008 0.71738 1.0089 0.81983 0.5472 0.62341 0.33454 1.3398 0.60275 1.0129 0.007195 0.007195 0.007195
89 88 1.4022 0.71517 1.0057 0.81868 0.54715 0.62308 0.33477 1.3397 0.60256 1.0128 0.007162 0.007162 0.007162
90 89 1.4067 0.71969 1.008 0.8195 0.54729 0.62348 0.33471 1.3396 0.60243 1.0129 0.007129 0.007129 0.007129
91 90 1.3997 0.71888 1.0106 0.81971 0.54727 0.62343 0.33495 1.3394 0.60221 1.0129 0.007096 0.007096 0.007096
92 91 1.4022 0.71719 1.0091 0.82048 0.54767 0.62366 0.33503 1.3392 0.60175 1.0129 0.007063 0.007063 0.007063
93 92 1.3989 0.71485 1.0078 0.81964 0.54788 0.62409 0.33514 1.3395 0.60185 1.013 0.00703 0.00703 0.00703
94 93 1.4019 0.71837 1.007 0.81886 0.54813 0.62434 0.33525 1.3396 0.6019 1.0129 0.006997 0.006997 0.006997
95 94 1.3981 0.71338 1.0055 0.81984 0.54822 0.6247 0.33542 1.3391 0.60186 1.0127 0.006964 0.006964 0.006964
96 95 1.3901 0.70669 1.007 0.82073 0.54828 0.62479 0.3355 1.3388 0.60193 1.0126 0.006931 0.006931 0.006931
97 96 1.3936 0.71641 1.006 0.82038 0.54833 0.62487 0.33563 1.3384 0.60175 1.0124 0.006898 0.006898 0.006898
98 97 1.4024 0.71776 1.008 0.82021 0.54825 0.62516 0.33575 1.3384 0.60125 1.0122 0.006865 0.006865 0.006865
99 98 1.3947 0.71141 1.0071 0.82041 0.54842 0.62523 0.33571 1.3385 0.60122 1.0122 0.006832 0.006832 0.006832
100 99 1.3989 0.71527 1.006 0.82181 0.54768 0.62527 0.33585 1.3382 0.6009 1.0121 0.006799 0.006799 0.006799
101 100 1.4007 0.71242 1.0033 0.82046 0.54783 0.62513 0.33594 1.3381 0.6008 1.012 0.006766 0.006766 0.006766
102 101 1.3874 0.70685 1.0052 0.82125 0.54761 0.62544 0.33618 1.3377 0.60064 1.0118 0.006733 0.006733 0.006733
103 102 1.3935 0.71074 1.0025 0.82127 0.54803 0.62556 0.33625 1.3374 0.60067 1.0116 0.0067 0.0067 0.0067
104 103 1.4003 0.71297 1.0023 0.82112 0.54759 0.62563 0.33632 1.3375 0.6007 1.0117 0.006667 0.006667 0.006667
105 104 1.3879 0.70909 1.0018 0.82122 0.54754 0.62568 0.33641 1.3374 0.60048 1.0116 0.006634 0.006634 0.006634
106 105 1.3922 0.71016 1.0032 0.82129 0.54845 0.62607 0.33655 1.3374 0.60051 1.0116 0.006601 0.006601 0.006601
107 106 1.3946 0.71243 1.0043 0.8213 0.54869 0.62641 0.33664 1.3374 0.6004 1.0115 0.006568 0.006568 0.006568
108 107 1.3827 0.70472 1.0035 0.81958 0.54931 0.62647 0.33678 1.3374 0.60012 1.0115 0.006535 0.006535 0.006535
109 108 1.3889 0.70793 1.0023 0.82013 0.5498 0.62686 0.33676 1.3372 0.59995 1.0114 0.006502 0.006502 0.006502
110 109 1.3947 0.70785 1.0047 0.82093 0.54955 0.62695 0.33685 1.337 0.5999 1.0114 0.006469 0.006469 0.006469
111 110 1.3854 0.70081 1.0033 0.82111 0.54945 0.62726 0.33697 1.3369 0.59983 1.0113 0.006436 0.006436 0.006436
112 111 1.4004 0.7117 1.0024 0.82131 0.54931 0.62743 0.33715 1.3366 0.59944 1.0112 0.006403 0.006403 0.006403
113 112 1.3912 0.70301 1.0046 0.8217 0.54985 0.62777 0.33721 1.3367 0.59945 1.0112 0.00637 0.00637 0.00637
114 113 1.3875 0.70827 1.0035 0.82263 0.54887 0.62762 0.33739 1.3365 0.59899 1.0111 0.006337 0.006337 0.006337
115 114 1.3873 0.70509 1.005 0.82242 0.54896 0.62767 0.33738 1.3363 0.59898 1.0111 0.006304 0.006304 0.006304
116 115 1.3814 0.70256 0.99727 0.82259 0.54882 0.62743 0.33746 1.3361 0.59874 1.0109 0.006271 0.006271 0.006271
117 116 1.3888 0.70403 0.99954 0.8226 0.54921 0.62778 0.33757 1.3358 0.59901 1.0108 0.006238 0.006238 0.006238
118 117 1.3896 0.70697 1.0004 0.82318 0.54945 0.62767 0.33751 1.3357 0.59913 1.0107 0.006205 0.006205 0.006205
119 118 1.3879 0.70283 0.99918 0.82335 0.5495 0.62786 0.33762 1.3356 0.59905 1.0106 0.006172 0.006172 0.006172
120 119 1.3902 0.70605 0.99902 0.82395 0.54916 0.62786 0.3378 1.3352 0.59882 1.0105 0.006139 0.006139 0.006139
121 120 1.3832 0.69787 1.0025 0.82258 0.5499 0.62806 0.33784 1.3352 0.59865 1.0105 0.006106 0.006106 0.006106
122 121 1.3874 0.70286 0.9999 0.82202 0.55039 0.62833 0.33815 1.3351 0.59855 1.0107 0.006073 0.006073 0.006073
123 122 1.3857 0.70233 0.99927 0.82216 0.5508 0.629 0.33831 1.3352 0.59858 1.0107 0.00604 0.00604 0.00604
124 123 1.3858 0.70197 0.99712 0.82175 0.55103 0.62892 0.33843 1.3349 0.5982 1.0105 0.006007 0.006007 0.006007
125 124 1.3786 0.69728 0.99963 0.82326 0.55073 0.62877 0.33858 1.3349 0.59783 1.0106 0.005974 0.005974 0.005974
126 125 1.3786 0.69268 0.99773 0.82349 0.55068 0.6297 0.33879 1.3349 0.59766 1.0104 0.005941 0.005941 0.005941
127 126 1.3949 0.70367 1.0003 0.82373 0.55044 0.62983 0.33901 1.3348 0.59776 1.0104 0.005908 0.005908 0.005908
128 127 1.3867 0.70239 1.0001 0.82395 0.55014 0.62936 0.33886 1.3346 0.59752 1.0103 0.005875 0.005875 0.005875
129 128 1.3803 0.69582 0.99711 0.82454 0.55068 0.6298 0.33921 1.3342 0.59731 1.0103 0.005842 0.005842 0.005842
130 129 1.3777 0.69471 0.99872 0.82423 0.55085 0.63037 0.33947 1.334 0.59742 1.0102 0.005809 0.005809 0.005809
131 130 1.3741 0.69255 1.0009 0.82481 0.55054 0.63002 0.33908 1.3341 0.59731 1.0102 0.005776 0.005776 0.005776
132 131 1.3787 0.69634 0.9976 0.82476 0.55058 0.63014 0.33914 1.3339 0.59748 1.0102 0.005743 0.005743 0.005743
133 132 1.3768 0.69408 0.99817 0.82489 0.55117 0.63065 0.3394 1.3337 0.59705 1.01 0.00571 0.00571 0.00571
134 133 1.3823 0.69617 0.99889 0.82564 0.55115 0.63098 0.33948 1.3333 0.59665 1.0097 0.005677 0.005677 0.005677
135 134 1.3765 0.69265 0.99652 0.82532 0.55085 0.63073 0.33965 1.333 0.59661 1.0096 0.005644 0.005644 0.005644
136 135 1.3767 0.69175 0.99628 0.82649 0.55093 0.6308 0.33964 1.3329 0.59625 1.0096 0.005611 0.005611 0.005611
137 136 1.3798 0.69559 0.99664 0.82624 0.55112 0.63067 0.33954 1.3325 0.59598 1.0095 0.005578 0.005578 0.005578
138 137 1.3749 0.69064 0.99435 0.82642 0.55147 0.6311 0.3395 1.3329 0.59591 1.0096 0.005545 0.005545 0.005545
139 138 1.3795 0.69338 0.99497 0.82778 0.55022 0.63097 0.33961 1.3326 0.59568 1.0093 0.005512 0.005512 0.005512
140 139 1.3767 0.69199 0.9961 0.8287 0.55047 0.63145 0.33988 1.3325 0.59553 1.0092 0.005479 0.005479 0.005479
141 140 1.3773 0.69169 0.99446 0.82719 0.55128 0.6316 0.34031 1.3322 0.59524 1.0089 0.005446 0.005446 0.005446
142 141 1.3752 0.69397 0.99854 0.824 0.55235 0.63169 0.3403 1.332 0.59498 1.0088 0.005413 0.005413 0.005413
143 142 1.3656 0.68489 0.99408 0.82572 0.55215 0.63217 0.34039 1.3319 0.59466 1.0088 0.00538 0.00538 0.00538
144 143 1.3649 0.68395 0.99551 0.82382 0.55289 0.63181 0.34036 1.3316 0.59432 1.0087 0.005347 0.005347 0.005347
145 144 1.3734 0.6892 0.99345 0.8243 0.55279 0.63185 0.34027 1.3316 0.59408 1.0087 0.005314 0.005314 0.005314
146 145 1.3682 0.68604 0.99237 0.82312 0.55353 0.63184 0.34034 1.3314 0.59393 1.0085 0.005281 0.005281 0.005281
147 146 1.3691 0.68676 0.99395 0.82281 0.55326 0.63198 0.34038 1.3314 0.59353 1.0085 0.005248 0.005248 0.005248
148 147 1.3712 0.68716 0.99482 0.82282 0.55397 0.63189 0.34038 1.3314 0.59346 1.0083 0.005215 0.005215 0.005215
149 148 1.3738 0.6874 0.99247 0.82357 0.55378 0.63172 0.34032 1.3311 0.59309 1.0081 0.005182 0.005182 0.005182
150 149 1.3698 0.68941 0.99034 0.82248 0.55383 0.63171 0.34024 1.331 0.59295 1.0079 0.005149 0.005149 0.005149
151 150 1.3654 0.68589 0.99287 0.82155 0.55422 0.63179 0.34017 1.3311 0.59295 1.0078 0.005116 0.005116 0.005116
152 151 1.3675 0.6843 0.99281 0.82365 0.55324 0.63179 0.34035 1.3308 0.59272 1.0079 0.005083 0.005083 0.005083
153 152 1.3683 0.6835 0.99382 0.82408 0.55304 0.6317 0.34042 1.3307 0.5924 1.0078 0.00505 0.00505 0.00505
154 153 1.3698 0.68492 0.99352 0.82535 0.55189 0.63188 0.34066 1.3305 0.59222 1.0078 0.005017 0.005017 0.005017
155 154 1.3685 0.68492 0.99299 0.82573 0.55243 0.63208 0.34078 1.3304 0.59185 1.0078 0.004984 0.004984 0.004984
156 155 1.3626 0.67738 0.98902 0.82532 0.55294 0.63223 0.34076 1.3305 0.59177 1.0078 0.004951 0.004951 0.004951
157 156 1.3636 0.68 0.99243 0.82667 0.55348 0.63295 0.34098 1.3303 0.59152 1.0078 0.004918 0.004918 0.004918
158 157 1.3594 0.6781 0.98973 0.82475 0.55373 0.6325 0.34107 1.3302 0.59135 1.0076 0.004885 0.004885 0.004885
159 158 1.3678 0.68295 0.99046 0.82561 0.55402 0.6329 0.34107 1.3301 0.59135 1.0076 0.004852 0.004852 0.004852
160 159 1.3645 0.6831 0.99186 0.82534 0.55491 0.63334 0.34127 1.3299 0.59096 1.0075 0.004819 0.004819 0.004819
161 160 1.3605 0.67788 0.99112 0.82656 0.55392 0.63306 0.34116 1.3301 0.59072 1.0076 0.004786 0.004786 0.004786
162 161 1.3606 0.6787 0.99057 0.82523 0.55402 0.63288 0.3412 1.3298 0.59054 1.0074 0.004753 0.004753 0.004753
163 162 1.3601 0.68191 0.98849 0.82557 0.55369 0.63291 0.34139 1.3298 0.58996 1.0073 0.00472 0.00472 0.00472
164 163 1.3638 0.67852 0.99231 0.82577 0.5542 0.63352 0.34162 1.3296 0.58984 1.0073 0.004687 0.004687 0.004687
165 164 1.3562 0.67699 0.98769 0.82626 0.55425 0.63356 0.34149 1.3294 0.58948 1.0071 0.004654 0.004654 0.004654
166 165 1.3602 0.67967 0.99079 0.82587 0.55412 0.63347 0.34137 1.3294 0.58935 1.0073 0.004621 0.004621 0.004621
167 166 1.3535 0.67376 0.98673 0.82726 0.55436 0.63382 0.34173 1.3293 0.58908 1.0073 0.004588 0.004588 0.004588
168 167 1.3575 0.6761 0.99138 0.82599 0.55471 0.63366 0.34157 1.3293 0.58896 1.0073 0.004555 0.004555 0.004555
169 168 1.3552 0.67288 0.9878 0.82602 0.55449 0.63393 0.34187 1.3294 0.58882 1.0073 0.004522 0.004522 0.004522
170 169 1.36 0.67704 0.98764 0.82613 0.55421 0.6339 0.342 1.3292 0.58844 1.0072 0.004489 0.004489 0.004489
171 170 1.3552 0.67637 0.98979 0.82649 0.55343 0.63351 0.34228 1.3293 0.58816 1.0072 0.004456 0.004456 0.004456
172 171 1.3534 0.67386 0.9914 0.82715 0.55347 0.63363 0.34223 1.3292 0.58792 1.0071 0.004423 0.004423 0.004423
173 172 1.351 0.67177 0.98792 0.82616 0.55343 0.63372 0.34239 1.3292 0.58784 1.0071 0.00439 0.00439 0.00439
174 173 1.3505 0.67166 0.98884 0.82556 0.55388 0.6339 0.34246 1.3292 0.58732 1.0071 0.004357 0.004357 0.004357
175 174 1.3579 0.67493 0.9908 0.82571 0.55353 0.63399 0.34258 1.329 0.58704 1.007 0.004324 0.004324 0.004324
176 175 1.3508 0.67169 0.98861 0.82545 0.55255 0.6333 0.34272 1.3289 0.58701 1.0069 0.004291 0.004291 0.004291
177 176 1.3554 0.67474 0.98644 0.82523 0.55275 0.63357 0.34269 1.3289 0.58682 1.0069 0.004258 0.004258 0.004258
178 177 1.3573 0.67108 0.98482 0.82587 0.55319 0.63386 0.34288 1.3288 0.58651 1.0068 0.004225 0.004225 0.004225
179 178 1.3527 0.67021 0.98847 0.82658 0.55338 0.63437 0.34309 1.3286 0.58672 1.0067 0.004192 0.004192 0.004192
180 179 1.3435 0.66617 0.98638 0.82482 0.55368 0.63379 0.343 1.3284 0.58667 1.0066 0.004159 0.004159 0.004159
181 180 1.3536 0.67269 0.98824 0.82754 0.5525 0.63405 0.34317 1.328 0.58654 1.0065 0.004126 0.004126 0.004126
182 181 1.3479 0.67108 0.98709 0.8272 0.55235 0.63396 0.34326 1.3279 0.58644 1.0065 0.004093 0.004093 0.004093
183 182 1.3417 0.66367 0.98255 0.82548 0.55378 0.63396 0.34317 1.3279 0.58615 1.0064 0.00406 0.00406 0.00406
184 183 1.3506 0.67055 0.98606 0.82441 0.55384 0.63389 0.34303 1.3276 0.58593 1.0062 0.004027 0.004027 0.004027
185 184 1.3402 0.66512 0.98497 0.82432 0.55396 0.6343 0.34318 1.3272 0.58589 1.0061 0.003994 0.003994 0.003994
186 185 1.3476 0.66572 0.98524 0.82387 0.55442 0.63424 0.34343 1.327 0.58582 1.0059 0.003961 0.003961 0.003961
187 186 1.3514 0.66669 0.98533 0.82396 0.55412 0.63464 0.34334 1.3271 0.58562 1.0058 0.003928 0.003928 0.003928
188 187 1.3481 0.66949 0.98588 0.82506 0.55397 0.63453 0.34357 1.3272 0.58563 1.0059 0.003895 0.003895 0.003895
189 188 1.3486 0.66407 0.98386 0.824 0.55413 0.63456 0.34367 1.3271 0.58584 1.0058 0.003862 0.003862 0.003862
190 189 1.3432 0.6625 0.98552 0.8245 0.55402 0.63437 0.34367 1.327 0.58587 1.0058 0.003829 0.003829 0.003829
191 190 1.3464 0.6655 0.98463 0.82247 0.55494 0.63514 0.34364 1.327 0.58567 1.0057 0.003796 0.003796 0.003796
192 191 1.3392 0.66056 0.98377 0.82379 0.55427 0.63507 0.34372 1.3268 0.58581 1.0056 0.003763 0.003763 0.003763
193 192 1.3409 0.66068 0.98347 0.8232 0.55474 0.63537 0.34361 1.3266 0.58574 1.0055 0.00373 0.00373 0.00373
194 193 1.3443 0.66483 0.98454 0.82259 0.55516 0.63514 0.34364 1.3266 0.58565 1.0055 0.003697 0.003697 0.003697
195 194 1.3424 0.66293 0.98034 0.82476 0.55474 0.63523 0.34369 1.3264 0.58597 1.0055 0.003664 0.003664 0.003664
196 195 1.3364 0.66169 0.98331 0.82378 0.55515 0.63541 0.34383 1.3262 0.58583 1.0054 0.003631 0.003631 0.003631
197 196 1.3357 0.65875 0.98083 0.82561 0.55466 0.63539 0.34401 1.3264 0.58553 1.0055 0.003598 0.003598 0.003598
198 197 1.3376 0.66148 0.98121 0.82485 0.55535 0.63549 0.34413 1.3264 0.58569 1.0054 0.003565 0.003565 0.003565
199 198 1.3356 0.65735 0.98116 0.82474 0.5555 0.63568 0.34423 1.3265 0.58561 1.0055 0.003532 0.003532 0.003532
200 199 1.3422 0.66173 0.98166 0.82604 0.55505 0.63582 0.34425 1.3267 0.58572 1.0054 0.003499 0.003499 0.003499
201 200 1.3381 0.65961 0.98269 0.82542 0.55569 0.6361 0.34465 1.3266 0.58572 1.0055 0.003466 0.003466 0.003466
202 201 1.3346 0.65792 0.98265 0.82729 0.5551 0.63659 0.34436 1.3267 0.58536 1.0055 0.003433 0.003433 0.003433
203 202 1.3293 0.65254 0.97846 0.82559 0.5556 0.63664 0.34472 1.3267 0.58525 1.0055 0.0034 0.0034 0.0034
204 203 1.3385 0.65796 0.97954 0.82573 0.55525 0.63674 0.34476 1.3268 0.5849 1.0054 0.003367 0.003367 0.003367
205 204 1.3289 0.65451 0.97813 0.82564 0.55535 0.63653 0.34502 1.3268 0.58477 1.0054 0.003334 0.003334 0.003334
206 205 1.3332 0.65623 0.97782 0.827 0.55499 0.63665 0.34483 1.3269 0.58471 1.0053 0.003301 0.003301 0.003301
207 206 1.3321 0.65534 0.97912 0.82734 0.55445 0.63653 0.34499 1.3269 0.58478 1.0054 0.003268 0.003268 0.003268
208 207 1.3363 0.65709 0.9789 0.82838 0.55445 0.63706 0.34501 1.3267 0.58445 1.0053 0.003235 0.003235 0.003235
209 208 1.3293 0.65415 0.97973 0.82761 0.55481 0.63673 0.34475 1.327 0.58425 1.0053 0.003202 0.003202 0.003202
210 209 1.3353 0.65727 0.97824 0.82762 0.55529 0.63693 0.34461 1.3271 0.58431 1.0052 0.003169 0.003169 0.003169
211 210 1.3279 0.65116 0.97499 0.82611 0.55597 0.63706 0.34464 1.3269 0.58407 1.005 0.003136 0.003136 0.003136
212 211 1.3313 0.65234 0.97816 0.82626 0.55579 0.63695 0.34471 1.3268 0.58389 1.0048 0.003103 0.003103 0.003103
213 212 1.3289 0.65224 0.98015 0.82649 0.55558 0.63689 0.34509 1.3269 0.58408 1.0048 0.00307 0.00307 0.00307
214 213 1.3242 0.64951 0.97583 0.82574 0.5562 0.63714 0.34496 1.3267 0.58383 1.0047 0.003037 0.003037 0.003037
215 214 1.3254 0.65301 0.97522 0.82596 0.55604 0.6373 0.34479 1.3268 0.58347 1.0046 0.003004 0.003004 0.003004
216 215 1.3273 0.65115 0.97424 0.82477 0.55617 0.63733 0.34503 1.3268 0.58333 1.0045 0.002971 0.002971 0.002971
217 216 1.3198 0.64455 0.97218 0.82528 0.55599 0.63721 0.34493 1.3269 0.58326 1.0044 0.002938 0.002938 0.002938
218 217 1.3197 0.64555 0.97685 0.82458 0.55667 0.63771 0.34522 1.3266 0.58292 1.0043 0.002905 0.002905 0.002905
219 218 1.3192 0.64702 0.97282 0.82304 0.55778 0.63783 0.34518 1.3269 0.58265 1.0042 0.002872 0.002872 0.002872
220 219 1.3155 0.64615 0.97342 0.82377 0.55726 0.63781 0.34542 1.3271 0.58272 1.0043 0.002839 0.002839 0.002839
221 220 1.3172 0.64597 0.97521 0.82352 0.55805 0.63805 0.34554 1.3272 0.58258 1.0043 0.002806 0.002806 0.002806
222 221 1.3197 0.64495 0.97415 0.82281 0.5582 0.63824 0.34567 1.3271 0.58209 1.0043 0.002773 0.002773 0.002773
223 222 1.3155 0.64493 0.97286 0.82303 0.5581 0.63792 0.34578 1.3272 0.58218 1.0042 0.00274 0.00274 0.00274
224 223 1.3058 0.64009 0.97206 0.8241 0.55785 0.63828 0.34614 1.3272 0.58238 1.0042 0.002707 0.002707 0.002707
225 224 1.3145 0.64162 0.97335 0.82366 0.55811 0.63852 0.34642 1.3269 0.5821 1.004 0.002674 0.002674 0.002674
226 225 1.3184 0.64613 0.97399 0.82315 0.55839 0.63871 0.34641 1.3265 0.5821 1.0039 0.002641 0.002641 0.002641
227 226 1.319 0.64176 0.97114 0.82401 0.55806 0.639 0.34655 1.3265 0.58218 1.0038 0.002608 0.002608 0.002608
228 227 1.3133 0.64004 0.97166 0.824 0.55785 0.63907 0.34642 1.3264 0.58216 1.0038 0.002575 0.002575 0.002575
229 228 1.3172 0.64167 0.97184 0.824 0.558 0.63925 0.34689 1.3261 0.58202 1.0039 0.002542 0.002542 0.002542
230 229 1.3072 0.63918 0.97226 0.82452 0.55775 0.6391 0.34703 1.3261 0.58201 1.0039 0.002509 0.002509 0.002509
231 230 1.3166 0.63981 0.9714 0.82447 0.55829 0.6395 0.34724 1.3259 0.58193 1.0038 0.002476 0.002476 0.002476
232 231 1.3148 0.64031 0.97158 0.82434 0.55805 0.63943 0.3472 1.326 0.58157 1.0038 0.002443 0.002443 0.002443
233 232 1.3059 0.63532 0.96838 0.82427 0.55883 0.63974 0.34757 1.3255 0.58141 1.0036 0.00241 0.00241 0.00241
234 233 1.3115 0.63841 0.97033 0.82429 0.55869 0.63968 0.34763 1.3257 0.58155 1.0037 0.002377 0.002377 0.002377
235 234 1.3013 0.63355 0.96933 0.82559 0.55816 0.63973 0.34783 1.3253 0.5814 1.0035 0.002344 0.002344 0.002344
236 235 1.299 0.6326 0.96709 0.82627 0.5581 0.63965 0.34799 1.3256 0.58135 1.0035 0.002311 0.002311 0.002311
237 236 1.3036 0.63394 0.96996 0.82546 0.55918 0.63993 0.34827 1.3251 0.58139 1.0035 0.002278 0.002278 0.002278
238 237 1.3048 0.6356 0.96859 0.82497 0.56021 0.64046 0.34891 1.3249 0.58146 1.0034 0.002245 0.002245 0.002245
239 238 1.3006 0.63233 0.96996 0.82466 0.56035 0.64074 0.34895 1.3249 0.58126 1.0034 0.002212 0.002212 0.002212
240 239 1.3131 0.63857 0.97315 0.82394 0.56065 0.64074 0.34898 1.3249 0.58141 1.0035 0.002179 0.002179 0.002179
241 240 1.3108 0.63706 0.97158 0.82427 0.56075 0.64092 0.34922 1.3248 0.58127 1.0035 0.002146 0.002146 0.002146
242 241 1.2968 0.63298 0.96814 0.82427 0.56047 0.64103 0.34931 1.3249 0.58138 1.0036 0.002113 0.002113 0.002113
243 242 1.298 0.63112 0.96519 0.82379 0.5605 0.64119 0.34932 1.3248 0.58139 1.0036 0.00208 0.00208 0.00208
244 243 1.2945 0.62723 0.9649 0.82462 0.56026 0.64131 0.34936 1.3249 0.58146 1.0035 0.002047 0.002047 0.002047
245 244 1.2958 0.62663 0.96582 0.82466 0.56021 0.6413 0.34952 1.3247 0.58134 1.0034 0.002014 0.002014 0.002014
246 245 1.3012 0.62934 0.96644 0.82466 0.56013 0.64147 0.34946 1.325 0.5814 1.0036 0.001981 0.001981 0.001981
247 246 1.294 0.62692 0.96783 0.8263 0.55913 0.64104 0.34912 1.3253 0.58135 1.0036 0.001948 0.001948 0.001948
248 247 1.297 0.62833 0.96434 0.82494 0.55967 0.64113 0.34928 1.3255 0.5813 1.0036 0.001915 0.001915 0.001915
249 248 1.2916 0.62731 0.9652 0.82662 0.55912 0.64142 0.34921 1.3255 0.58125 1.0036 0.001882 0.001882 0.001882
250 249 1.2874 0.62193 0.96326 0.82658 0.55993 0.64167 0.34918 1.3261 0.58143 1.0037 0.001849 0.001849 0.001849
251 250 1.2994 0.62638 0.96512 0.82618 0.56023 0.64205 0.34918 1.3261 0.58162 1.0037 0.001816 0.001816 0.001816
252 251 1.293 0.62706 0.96573 0.82672 0.56055 0.64226 0.34939 1.3261 0.58145 1.0038 0.001783 0.001783 0.001783
253 252 1.2876 0.62387 0.96027 0.8271 0.55957 0.64236 0.34923 1.3262 0.58179 1.0037 0.00175 0.00175 0.00175
254 253 1.2878 0.62273 0.96041 0.82664 0.55922 0.64211 0.34928 1.3264 0.58163 1.0037 0.001717 0.001717 0.001717
255 254 1.2917 0.62056 0.96255 0.82564 0.56021 0.642 0.34924 1.3264 0.58157 1.0038 0.001684 0.001684 0.001684
256 255 1.292 0.62485 0.96082 0.8261 0.55993 0.64192 0.3491 1.3265 0.58147 1.0038 0.001651 0.001651 0.001651
257 256 1.2835 0.62036 0.96122 0.82533 0.55996 0.6419 0.34927 1.3264 0.58141 1.0038 0.001618 0.001618 0.001618
258 257 1.2875 0.62276 0.95954 0.82592 0.55991 0.64201 0.34945 1.3264 0.58152 1.0038 0.001585 0.001585 0.001585
259 258 1.2869 0.61985 0.96011 0.82681 0.55996 0.64185 0.3492 1.3265 0.58145 1.0037 0.001552 0.001552 0.001552
260 259 1.274 0.61597 0.9602 0.82617 0.56021 0.64191 0.34949 1.3267 0.58119 1.0038 0.001519 0.001519 0.001519
261 260 1.2888 0.62277 0.96148 0.8263 0.56023 0.6422 0.3494 1.3267 0.58122 1.0037 0.001486 0.001486 0.001486
262 261 1.2826 0.61716 0.96207 0.82674 0.56016 0.6422 0.34924 1.3269 0.58129 1.0038 0.001453 0.001453 0.001453
263 262 1.279 0.61271 0.95932 0.82688 0.56001 0.64199 0.34946 1.3269 0.58127 1.0039 0.00142 0.00142 0.00142
264 263 1.2758 0.61523 0.9586 0.82744 0.56006 0.64238 0.34951 1.327 0.5811 1.004 0.001387 0.001387 0.001387
265 264 1.2824 0.61845 0.95818 0.8279 0.55942 0.64239 0.34957 1.3272 0.5813 1.0039 0.001354 0.001354 0.001354
266 265 1.2762 0.61366 0.95706 0.8287 0.55929 0.64228 0.34947 1.3272 0.58107 1.0039 0.001321 0.001321 0.001321
267 266 1.2807 0.61507 0.95664 0.82774 0.55952 0.64258 0.34954 1.3272 0.58129 1.0039 0.001288 0.001288 0.001288
268 267 1.2714 0.60982 0.95798 0.82847 0.55928 0.64241 0.34979 1.3271 0.58129 1.0038 0.001255 0.001255 0.001255
269 268 1.2727 0.61025 0.95609 0.83076 0.55888 0.64255 0.34974 1.3273 0.58119 1.0039 0.001222 0.001222 0.001222
270 269 1.276 0.61143 0.95842 0.82965 0.55893 0.64245 0.34978 1.3276 0.58121 1.004 0.001189 0.001189 0.001189
271 270 1.2735 0.61147 0.95654 0.82926 0.55863 0.64251 0.3499 1.3277 0.58163 1.0039 0.001156 0.001156 0.001156
272 271 1.2714 0.60847 0.95571 0.82997 0.55854 0.64248 0.34989 1.3276 0.58144 1.0038 0.001123 0.001123 0.001123
273 272 1.2699 0.61123 0.95451 0.82883 0.55885 0.64262 0.35004 1.3277 0.58135 1.0038 0.00109 0.00109 0.00109
274 273 1.2736 0.61214 0.95547 0.8288 0.55873 0.64279 0.34999 1.3282 0.5814 1.0039 0.001057 0.001057 0.001057
275 274 1.2728 0.60935 0.95188 0.82797 0.55938 0.64302 0.34996 1.3284 0.58143 1.0038 0.001024 0.001024 0.001024
276 275 1.2681 0.60683 0.95302 0.829 0.55918 0.64317 0.35002 1.3285 0.58132 1.0038 0.000991 0.000991 0.000991
277 276 1.2669 0.60752 0.95047 0.82944 0.55911 0.64306 0.35004 1.3284 0.5811 1.0038 0.000958 0.000958 0.000958
278 277 1.2623 0.60315 0.95131 0.8294 0.55908 0.64305 0.34989 1.3291 0.58142 1.0038 0.000925 0.000925 0.000925
279 278 1.2637 0.60384 0.95263 0.82986 0.55886 0.64322 0.35017 1.3288 0.58149 1.0037 0.000892 0.000892 0.000892
280 279 1.2565 0.60197 0.9519 0.82912 0.55933 0.64337 0.35015 1.3289 0.58174 1.0037 0.000859 0.000859 0.000859
281 280 1.2616 0.60382 0.95214 0.82988 0.55939 0.64385 0.35024 1.329 0.58166 1.0037 0.000826 0.000826 0.000826
282 281 1.2603 0.60163 0.95026 0.83005 0.55893 0.64375 0.35017 1.3292 0.5818 1.0037 0.000793 0.000793 0.000793
283 282 1.258 0.60086 0.95107 0.83006 0.55914 0.64401 0.35048 1.3293 0.58163 1.0038 0.00076 0.00076 0.00076
284 283 1.259 0.60176 0.9523 0.82992 0.55928 0.64398 0.3504 1.3294 0.58141 1.0038 0.000727 0.000727 0.000727
285 284 1.2575 0.59749 0.95011 0.83031 0.55918 0.64389 0.35026 1.3295 0.5815 1.0038 0.000694 0.000694 0.000694
286 285 1.2563 0.5975 0.94853 0.82958 0.55977 0.6441 0.35033 1.3295 0.58122 1.0037 0.000661 0.000661 0.000661
287 286 1.2556 0.59814 0.95015 0.83046 0.55928 0.64411 0.35052 1.3297 0.58101 1.0038 0.000628 0.000628 0.000628
288 287 1.2569 0.59836 0.94949 0.83075 0.55859 0.64377 0.35045 1.3298 0.58096 1.0038 0.000595 0.000595 0.000595
289 288 1.2467 0.59551 0.94928 0.83142 0.5582 0.64347 0.35043 1.3301 0.581 1.0039 0.000562 0.000562 0.000562
290 289 1.2488 0.59376 0.94848 0.83046 0.5586 0.64385 0.35029 1.3302 0.58103 1.0039 0.000529 0.000529 0.000529
291 290 1.2512 0.59594 0.94861 0.83122 0.5579 0.64364 0.35038 1.3303 0.58092 1.0039 0.000496 0.000496 0.000496
292 291 1.2183 0.55915 0.94806 0.83069 0.55834 0.64381 0.35052 1.3306 0.58101 1.004 0.000463 0.000463 0.000463
293 292 1.2135 0.55606 0.94714 0.83051 0.55849 0.64382 0.35047 1.3307 0.58106 1.004 0.00043 0.00043 0.00043
294 293 1.2068 0.5524 0.94658 0.83093 0.558 0.64399 0.35041 1.3307 0.58107 1.004 0.000397 0.000397 0.000397
295 294 1.2077 0.55273 0.94783 0.83089 0.5579 0.64375 0.35043 1.3308 0.58095 1.0041 0.000364 0.000364 0.000364
296 295 1.2061 0.55151 0.94596 0.83098 0.55731 0.64381 0.35045 1.3312 0.58103 1.0042 0.000331 0.000331 0.000331
297 296 1.1994 0.54712 0.94586 0.83113 0.55809 0.64418 0.35057 1.3312 0.5812 1.0044 0.000298 0.000298 0.000298
298 297 1.1969 0.54597 0.94278 0.83107 0.55785 0.64399 0.35048 1.3314 0.5811 1.0044 0.000265 0.000265 0.000265
299 298 1.1968 0.54484 0.94344 0.83156 0.55785 0.64394 0.35043 1.3316 0.5812 1.0045 0.000232 0.000232 0.000232
300 299 1.1948 0.54383 0.9427 0.83074 0.5579 0.64404 0.35051 1.3318 0.5812 1.0046 0.000199 0.000199 0.000199
301 300 1.1984 0.54449 0.94156 0.83123 0.55839 0.64426 0.35051 1.3321 0.5813 1.0047 0.000166 0.000166 0.000166

Binary file not shown.

After

Width:  |  Height:  |  Size: 278 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 254 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 192 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 220 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 191 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 253 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 247 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 246 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 239 KiB

@ -0,0 +1,105 @@
task: detect
mode: train
model: yolov8n.pt
data: datasets/micai/data.yaml
epochs: 50
time: null
patience: 100
batch: 2
imgsz: 640
save: true
save_period: -1
cache: disk
device: '0'
workers: 4
project: null
name: train10
exist_ok: false
pretrained: true
optimizer: auto
verbose: true
seed: 0
deterministic: true
single_cls: false
rect: false
cos_lr: false
close_mosaic: 10
resume: false
amp: true
fraction: 1.0
profile: false
freeze: null
multi_scale: false
overlap_mask: true
mask_ratio: 4
dropout: 0.0
val: true
split: val
save_json: false
conf: null
iou: 0.7
max_det: 300
half: false
dnn: false
plots: true
source: null
vid_stride: 1
stream_buffer: false
visualize: false
augment: false
agnostic_nms: false
classes: null
retina_masks: false
embed: null
show: false
save_frames: false
save_txt: false
save_conf: false
save_crop: false
show_labels: true
show_conf: true
show_boxes: true
line_width: null
format: torchscript
keras: false
optimize: false
int8: false
dynamic: false
simplify: true
opset: null
workspace: null
nms: false
lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 7.5
cls: 0.5
dfl: 1.5
pose: 12.0
kobj: 1.0
nbs: 64
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
bgr: 0.0
mosaic: 1.0
mixup: 0.0
cutmix: 0.0
copy_paste: 0.0
copy_paste_mode: flip
auto_augment: randaugment
erasing: 0.4
cfg: null
tracker: botsort.yaml
save_dir: runs\detect\train10

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 103 KiB

@ -0,0 +1,105 @@
task: detect
mode: train
model: runs/detect/train/weights/best.pt
data: datasets/micai/data.yaml
epochs: 100
time: null
patience: 100
batch: 2
imgsz: 640
save: true
save_period: -1
cache: disk
device: '0'
workers: 4
project: null
name: train11
exist_ok: false
pretrained: true
optimizer: Adam
verbose: true
seed: 0
deterministic: true
single_cls: false
rect: false
cos_lr: false
close_mosaic: 10
resume: false
amp: true
fraction: 1.0
profile: false
freeze: null
multi_scale: false
overlap_mask: true
mask_ratio: 4
dropout: 0.0
val: true
split: val
save_json: false
conf: null
iou: 0.7
max_det: 300
half: false
dnn: false
plots: true
source: null
vid_stride: 1
stream_buffer: false
visualize: false
augment: false
agnostic_nms: false
classes: null
retina_masks: false
embed: null
show: false
save_frames: false
save_txt: false
save_conf: false
save_crop: false
show_labels: true
show_conf: true
show_boxes: true
line_width: null
format: torchscript
keras: false
optimize: false
int8: false
dynamic: false
simplify: true
opset: null
workspace: null
nms: false
lr0: 0.001
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 7.5
cls: 0.5
dfl: 1.5
pose: 12.0
kobj: 1.0
nbs: 64
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
bgr: 0.0
mosaic: 1.0
mixup: 0.0
cutmix: 0.0
copy_paste: 0.0
copy_paste_mode: flip
auto_augment: randaugment
erasing: 0.4
cfg: null
tracker: botsort.yaml
save_dir: runs\detect\train11

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

@ -0,0 +1,101 @@
epoch,time,train/box_loss,train/cls_loss,train/dfl_loss,metrics/precision(B),metrics/recall(B),metrics/mAP50(B),metrics/mAP50-95(B),val/box_loss,val/cls_loss,val/dfl_loss,lr/pg0,lr/pg1,lr/pg2
1,32.414,2.24267,2.76326,2.44654,0.26772,0.28938,0.20462,0.065,2.49766,2.64184,2.85018,0.0671019,0.000332305,0.000332305
2,60.028,1.97766,2.38692,2.22875,0.51644,0.31868,0.32115,0.11675,2.37122,2.40942,2.88427,0.0340953,0.000659048,0.000659048
3,88.1918,1.90521,2.34675,2.16063,0.53029,0.34739,0.36338,0.1328,2.15776,2.27103,2.61311,0.00108207,0.000979192,0.000979192
4,116.25,1.82627,2.24168,2.07976,0.43812,0.37729,0.37772,0.16794,2.09256,2.29625,2.5207,0.0009703,0.0009703,0.0009703
5,144.491,1.81799,2.25053,2.08099,0.4801,0.44689,0.38456,0.14153,2.13307,2.13032,2.49739,0.0009604,0.0009604,0.0009604
6,173.482,1.77362,2.15011,2.00858,0.43549,0.42125,0.4043,0.1725,1.96626,2.06683,2.39286,0.0009505,0.0009505,0.0009505
7,202.423,1.74896,2.03438,2.01792,0.67359,0.45421,0.53932,0.23264,1.89884,1.94041,2.33625,0.0009406,0.0009406,0.0009406
8,230.793,1.70523,1.9898,1.98629,0.56742,0.44686,0.51056,0.22722,1.95535,1.9048,2.39082,0.0009307,0.0009307,0.0009307
9,259.533,1.74251,1.98534,2.00439,0.4614,0.42857,0.4237,0.19831,1.92268,1.97872,2.3743,0.0009208,0.0009208,0.0009208
10,288.073,1.67794,1.981,1.95166,0.61145,0.45055,0.49942,0.21178,1.97989,1.96016,2.41295,0.0009109,0.0009109,0.0009109
11,316.88,1.65532,1.89882,1.93587,0.67441,0.45788,0.54042,0.25747,1.93853,1.82537,2.36118,0.000901,0.000901,0.000901
12,345.603,1.65021,1.89067,1.92919,0.69827,0.43956,0.52925,0.26132,1.87667,1.85143,2.27269,0.0008911,0.0008911,0.0008911
13,374.129,1.59985,1.83906,1.88475,0.62635,0.50351,0.57033,0.26933,1.86558,1.80824,2.30758,0.0008812,0.0008812,0.0008812
14,403.286,1.62407,1.83295,1.89065,0.56725,0.47054,0.52768,0.24694,1.81451,1.7701,2.22956,0.0008713,0.0008713,0.0008713
15,432.366,1.60296,1.77482,1.88321,0.64621,0.50549,0.54771,0.25345,1.90397,1.7978,2.26933,0.0008614,0.0008614,0.0008614
16,460.773,1.585,1.75494,1.88596,0.57749,0.54072,0.56168,0.26997,1.8621,1.80306,2.25363,0.0008515,0.0008515,0.0008515
17,488.433,1.57943,1.73025,1.87363,0.65582,0.5348,0.61148,0.2862,1.83783,1.67926,2.22929,0.0008416,0.0008416,0.0008416
18,516.343,1.61389,1.77607,1.88592,0.7136,0.5348,0.60942,0.30526,1.82114,1.61628,2.19264,0.0008317,0.0008317,0.0008317
19,544.51,1.54854,1.72495,1.83294,0.62805,0.57509,0.62005,0.30174,1.78549,1.64091,2.14888,0.0008218,0.0008218,0.0008218
20,572.423,1.55092,1.73736,1.85153,0.67901,0.53114,0.62093,0.30948,1.77059,1.61006,2.14009,0.0008119,0.0008119,0.0008119
21,601.361,1.52205,1.69397,1.80964,0.76412,0.48652,0.59731,0.2649,1.98519,1.70917,2.3803,0.000802,0.000802,0.000802
22,629.483,1.5316,1.614,1.81487,0.71008,0.56521,0.64367,0.30881,1.77089,1.61986,2.14916,0.0007921,0.0007921,0.0007921
23,658.724,1.5341,1.65514,1.80844,0.67783,0.49817,0.56799,0.26784,1.86351,1.71964,2.19192,0.0007822,0.0007822,0.0007822
24,687,1.52939,1.66666,1.8096,0.66576,0.52381,0.6086,0.28432,1.84809,1.64899,2.22731,0.0007723,0.0007723,0.0007723
25,715.873,1.50933,1.6483,1.79741,0.73779,0.51533,0.61653,0.31731,1.78849,1.57772,2.17384,0.0007624,0.0007624,0.0007624
26,744.428,1.51218,1.62196,1.81704,0.71555,0.5348,0.6478,0.32436,1.74485,1.53469,2.10931,0.0007525,0.0007525,0.0007525
27,773.929,1.53387,1.61883,1.81399,0.68278,0.54945,0.62238,0.31383,1.73347,1.59169,2.09269,0.0007426,0.0007426,0.0007426
28,801.887,1.48371,1.57748,1.7728,0.71782,0.54945,0.66692,0.33261,1.75739,1.4903,2.09978,0.0007327,0.0007327,0.0007327
29,831.001,1.48572,1.59136,1.79191,0.7249,0.58242,0.66111,0.32355,1.71949,1.50765,2.10228,0.0007228,0.0007228,0.0007228
30,859.327,1.45483,1.52687,1.75303,0.67645,0.57437,0.63888,0.32724,1.76898,1.52787,2.11377,0.0007129,0.0007129,0.0007129
31,889.11,1.46865,1.54256,1.75081,0.79864,0.58974,0.68066,0.34031,1.75179,1.47448,2.09299,0.000703,0.000703,0.000703
32,918.029,1.46632,1.50413,1.75214,0.72109,0.58974,0.66843,0.34488,1.75718,1.48461,2.12718,0.0006931,0.0006931,0.0006931
33,947.631,1.41437,1.49622,1.73348,0.72224,0.60006,0.6839,0.36537,1.71616,1.46237,2.08305,0.0006832,0.0006832,0.0006832
34,975.904,1.42994,1.47095,1.72598,0.69619,0.58242,0.64927,0.34001,1.7465,1.5044,2.13929,0.0006733,0.0006733,0.0006733
35,1005.22,1.44603,1.44603,1.73895,0.65841,0.60073,0.67766,0.32651,1.81157,1.48775,2.15242,0.0006634,0.0006634,0.0006634
36,1033.79,1.40696,1.47481,1.71477,0.74418,0.56044,0.6773,0.36139,1.69891,1.43329,2.09813,0.0006535,0.0006535,0.0006535
37,1063.93,1.42792,1.44625,1.70282,0.70447,0.59374,0.66471,0.3506,1.72008,1.44284,2.10358,0.0006436,0.0006436,0.0006436
38,1092.88,1.41928,1.45681,1.71542,0.78082,0.58974,0.66808,0.34928,1.72344,1.44796,2.09133,0.0006337,0.0006337,0.0006337
39,1122.39,1.44818,1.50314,1.74108,0.69814,0.61172,0.6813,0.36422,1.73462,1.47567,2.08863,0.0006238,0.0006238,0.0006238
40,1150.42,1.41735,1.46857,1.71313,0.69828,0.62733,0.68409,0.37007,1.70661,1.40801,2.07966,0.0006139,0.0006139,0.0006139
41,1179.61,1.40746,1.40309,1.70843,0.71639,0.61538,0.68558,0.37525,1.73357,1.39459,2.11059,0.000604,0.000604,0.000604
42,1208.25,1.39679,1.42633,1.72209,0.7417,0.61538,0.69596,0.35391,1.73055,1.42919,2.1306,0.0005941,0.0005941,0.0005941
43,1237.87,1.39607,1.47324,1.70388,0.71494,0.61538,0.6932,0.36141,1.72957,1.44255,2.08558,0.0005842,0.0005842,0.0005842
44,1266.1,1.39155,1.38228,1.66963,0.66972,0.65201,0.676,0.35202,1.73902,1.47218,2.09667,0.0005743,0.0005743,0.0005743
45,1296.33,1.3868,1.45397,1.70556,0.73667,0.58409,0.67053,0.34728,1.75891,1.43324,2.09794,0.0005644,0.0005644,0.0005644
46,1324.91,1.37198,1.36798,1.68213,0.71756,0.63736,0.70536,0.38345,1.69646,1.39443,2.05638,0.0005545,0.0005545,0.0005545
47,1354.56,1.35532,1.3342,1.6444,0.72315,0.61538,0.69339,0.37256,1.68085,1.37145,2.05409,0.0005446,0.0005446,0.0005446
48,1383.73,1.37024,1.3845,1.67921,0.70932,0.59341,0.67257,0.35044,1.71974,1.40371,2.08145,0.0005347,0.0005347,0.0005347
49,1412.99,1.35807,1.35233,1.66253,0.66086,0.663,0.69412,0.36223,1.70911,1.38339,2.07957,0.0005248,0.0005248,0.0005248
50,1441.76,1.35499,1.36345,1.6581,0.6749,0.64103,0.70031,0.37075,1.68456,1.41202,2.05755,0.0005149,0.0005149,0.0005149
51,1471.5,1.373,1.33996,1.65845,0.63106,0.64103,0.65869,0.34747,1.7124,1.42015,2.07297,0.000505,0.000505,0.000505
52,1500.25,1.37176,1.34797,1.67102,0.62163,0.63792,0.67238,0.35036,1.69432,1.40543,2.05832,0.0004951,0.0004951,0.0004951
53,1530.19,1.33781,1.32556,1.63826,0.7217,0.65201,0.70416,0.36952,1.71151,1.39076,2.06534,0.0004852,0.0004852,0.0004852
54,1558.78,1.3487,1.28986,1.65672,0.71077,0.63004,0.69473,0.36676,1.72084,1.36169,2.08507,0.0004753,0.0004753,0.0004753
55,1588.22,1.35449,1.27138,1.64987,0.72556,0.61172,0.67592,0.35501,1.73507,1.37868,2.07332,0.0004654,0.0004654,0.0004654
56,1617.04,1.33647,1.31912,1.64424,0.79665,0.6044,0.70309,0.36764,1.72065,1.36897,2.0577,0.0004555,0.0004555,0.0004555
57,1647,1.33656,1.28157,1.64613,0.7561,0.58242,0.67329,0.35537,1.74467,1.40858,2.0744,0.0004456,0.0004456,0.0004456
58,1676,1.32228,1.292,1.61397,0.72257,0.64875,0.68658,0.36662,1.7138,1.35806,2.08002,0.0004357,0.0004357,0.0004357
59,1705.28,1.33019,1.27701,1.63897,0.7593,0.61538,0.7018,0.38152,1.68064,1.33396,2.06308,0.0004258,0.0004258,0.0004258
60,1734.22,1.32649,1.2398,1.63631,0.75155,0.64267,0.71109,0.377,1.67655,1.35448,2.06067,0.0004159,0.0004159,0.0004159
61,1764.09,1.31355,1.28887,1.63525,0.72713,0.66375,0.71203,0.36788,1.70207,1.35984,2.0649,0.000406,0.000406,0.000406
62,1792.55,1.29966,1.24102,1.61156,0.7514,0.64103,0.70403,0.36626,1.74834,1.31034,2.09392,0.0003961,0.0003961,0.0003961
63,1822.45,1.29534,1.22374,1.59397,0.75162,0.65398,0.72504,0.38762,1.6981,1.34321,2.06248,0.0003862,0.0003862,0.0003862
64,1851.41,1.30964,1.23487,1.63502,0.78312,0.60842,0.71096,0.38537,1.67323,1.353,2.02626,0.0003763,0.0003763,0.0003763
65,1880.51,1.30114,1.23135,1.62139,0.81397,0.62637,0.74032,0.37952,1.69302,1.31631,2.052,0.0003664,0.0003664,0.0003664
66,1908.67,1.31567,1.24804,1.61992,0.76075,0.65934,0.74534,0.39731,1.64972,1.2835,2.02285,0.0003565,0.0003565,0.0003565
67,1937.96,1.32494,1.2248,1.62887,0.769,0.62191,0.71163,0.3783,1.68745,1.32329,2.05268,0.0003466,0.0003466,0.0003466
68,1966.83,1.28643,1.23239,1.59691,0.71399,0.65201,0.70042,0.3782,1.6903,1.34443,2.03825,0.0003367,0.0003367,0.0003367
69,1996.71,1.26482,1.20995,1.59215,0.72707,0.66356,0.71651,0.38626,1.68262,1.29941,2.04485,0.0003268,0.0003268,0.0003268
70,2024.93,1.26988,1.18372,1.58875,0.71215,0.65568,0.71815,0.38141,1.70194,1.32852,2.06548,0.0003169,0.0003169,0.0003169
71,2053.63,1.27559,1.19844,1.58361,0.76639,0.65568,0.72996,0.39283,1.68092,1.33901,2.03666,0.000307,0.000307,0.000307
72,2082.51,1.25845,1.19462,1.57502,0.70026,0.67033,0.70276,0.38445,1.67556,1.29985,2.0251,0.0002971,0.0002971,0.0002971
73,2112.07,1.25379,1.20852,1.57194,0.78795,0.61905,0.72304,0.38769,1.6873,1.28427,2.05299,0.0002872,0.0002872,0.0002872
74,2140.85,1.21995,1.16068,1.54718,0.78243,0.64835,0.71847,0.38332,1.71292,1.27937,2.09599,0.0002773,0.0002773,0.0002773
75,2170.5,1.25818,1.16842,1.58352,0.72489,0.62637,0.70929,0.38139,1.72948,1.28487,2.10326,0.0002674,0.0002674,0.0002674
76,2199.22,1.25354,1.19406,1.56063,0.74872,0.69231,0.73686,0.38577,1.69979,1.24654,2.10326,0.0002575,0.0002575,0.0002575
77,2229.27,1.20462,1.13439,1.53476,0.78503,0.6337,0.72217,0.38736,1.7053,1.24252,2.08779,0.0002476,0.0002476,0.0002476
78,2257.68,1.24206,1.13562,1.5491,0.79052,0.68864,0.74571,0.39341,1.68399,1.25069,2.0552,0.0002377,0.0002377,0.0002377
79,2287.31,1.21462,1.1032,1.53564,0.73417,0.68498,0.71693,0.39071,1.7011,1.28875,2.0674,0.0002278,0.0002278,0.0002278
80,2315.56,1.23937,1.13075,1.56067,0.83863,0.65934,0.73018,0.39436,1.69005,1.26745,2.0662,0.0002179,0.0002179,0.0002179
81,2344.49,1.19883,1.07737,1.52873,0.82254,0.71062,0.7548,0.39909,1.70075,1.20194,2.07956,0.000208,0.000208,0.000208
82,2373.17,1.23758,1.14143,1.57432,0.80165,0.68498,0.74513,0.39183,1.6952,1.24219,2.07024,0.0001981,0.0001981,0.0001981
83,2402.74,1.21373,1.12215,1.52703,0.81774,0.64095,0.72875,0.38923,1.72085,1.2454,2.07837,0.0001882,0.0001882,0.0001882
84,2431.69,1.22851,1.1158,1.54509,0.747,0.69231,0.7353,0.39125,1.70159,1.24814,2.06485,0.0001783,0.0001783,0.0001783
85,2460.59,1.19888,1.10579,1.5364,0.75301,0.69239,0.73957,0.38729,1.70229,1.23599,2.06932,0.0001684,0.0001684,0.0001684
86,2488.78,1.21901,1.09734,1.53882,0.70893,0.69963,0.73596,0.39131,1.69299,1.25542,2.06595,0.0001585,0.0001585,0.0001585
87,2517.74,1.20184,1.09263,1.51732,0.80053,0.69092,0.76069,0.40494,1.67436,1.22855,2.0473,0.0001486,0.0001486,0.0001486
88,2546.54,1.18685,1.05577,1.51419,0.81722,0.65511,0.7303,0.40181,1.66887,1.26043,2.04557,0.0001387,0.0001387,0.0001387
89,2576.51,1.19916,1.10545,1.53913,0.82443,0.68498,0.76331,0.40481,1.67763,1.21459,2.05347,0.0001288,0.0001288,0.0001288
90,2605.07,1.21587,1.10215,1.53568,0.79741,0.68132,0.74663,0.39784,1.67961,1.24023,2.05085,0.0001189,0.0001189,0.0001189
91,2642.42,1.17656,0.94854,1.58452,0.74634,0.68132,0.71606,0.37783,1.71594,1.26458,2.07223,0.000109,0.000109,0.000109
92,2671.49,1.13141,0.88995,1.5602,0.77676,0.68825,0.73647,0.39443,1.67278,1.2426,2.03472,9.91e-05,9.91e-05,9.91e-05
93,2701.12,1.13255,0.86812,1.55052,0.79337,0.67507,0.75465,0.40744,1.6533,1.21336,2.01721,8.92e-05,8.92e-05,8.92e-05
94,2729.41,1.08828,0.84638,1.50511,0.8043,0.66667,0.74972,0.40504,1.66871,1.20312,2.04215,7.93e-05,7.93e-05,7.93e-05
95,2758.52,1.13154,0.82432,1.53812,0.8114,0.66187,0.74411,0.39931,1.66226,1.20311,2.02831,6.94e-05,6.94e-05,6.94e-05
96,2788.23,1.07387,0.80326,1.49687,0.79437,0.69597,0.74904,0.40287,1.67852,1.20329,2.05182,5.95e-05,5.95e-05,5.95e-05
97,2817.76,1.08308,0.8143,1.50047,0.814,0.65725,0.74502,0.40494,1.67537,1.19519,2.04756,4.96e-05,4.96e-05,4.96e-05
98,2846.97,1.09165,0.7954,1.49432,0.80317,0.65568,0.7437,0.40397,1.67076,1.20234,2.04154,3.97e-05,3.97e-05,3.97e-05
99,2876.07,1.08929,0.79844,1.49546,0.81373,0.67399,0.74796,0.40965,1.66571,1.20279,2.04202,2.98e-05,2.98e-05,2.98e-05
100,2904.88,1.0537,0.75972,1.48027,0.81612,0.68864,0.75524,0.4107,1.66607,1.18487,2.04309,1.99e-05,1.99e-05,1.99e-05
1 epoch time train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B) metrics/mAP50(B) metrics/mAP50-95(B) val/box_loss val/cls_loss val/dfl_loss lr/pg0 lr/pg1 lr/pg2
2 1 32.414 2.24267 2.76326 2.44654 0.26772 0.28938 0.20462 0.065 2.49766 2.64184 2.85018 0.0671019 0.000332305 0.000332305
3 2 60.028 1.97766 2.38692 2.22875 0.51644 0.31868 0.32115 0.11675 2.37122 2.40942 2.88427 0.0340953 0.000659048 0.000659048
4 3 88.1918 1.90521 2.34675 2.16063 0.53029 0.34739 0.36338 0.1328 2.15776 2.27103 2.61311 0.00108207 0.000979192 0.000979192
5 4 116.25 1.82627 2.24168 2.07976 0.43812 0.37729 0.37772 0.16794 2.09256 2.29625 2.5207 0.0009703 0.0009703 0.0009703
6 5 144.491 1.81799 2.25053 2.08099 0.4801 0.44689 0.38456 0.14153 2.13307 2.13032 2.49739 0.0009604 0.0009604 0.0009604
7 6 173.482 1.77362 2.15011 2.00858 0.43549 0.42125 0.4043 0.1725 1.96626 2.06683 2.39286 0.0009505 0.0009505 0.0009505
8 7 202.423 1.74896 2.03438 2.01792 0.67359 0.45421 0.53932 0.23264 1.89884 1.94041 2.33625 0.0009406 0.0009406 0.0009406
9 8 230.793 1.70523 1.9898 1.98629 0.56742 0.44686 0.51056 0.22722 1.95535 1.9048 2.39082 0.0009307 0.0009307 0.0009307
10 9 259.533 1.74251 1.98534 2.00439 0.4614 0.42857 0.4237 0.19831 1.92268 1.97872 2.3743 0.0009208 0.0009208 0.0009208
11 10 288.073 1.67794 1.981 1.95166 0.61145 0.45055 0.49942 0.21178 1.97989 1.96016 2.41295 0.0009109 0.0009109 0.0009109
12 11 316.88 1.65532 1.89882 1.93587 0.67441 0.45788 0.54042 0.25747 1.93853 1.82537 2.36118 0.000901 0.000901 0.000901
13 12 345.603 1.65021 1.89067 1.92919 0.69827 0.43956 0.52925 0.26132 1.87667 1.85143 2.27269 0.0008911 0.0008911 0.0008911
14 13 374.129 1.59985 1.83906 1.88475 0.62635 0.50351 0.57033 0.26933 1.86558 1.80824 2.30758 0.0008812 0.0008812 0.0008812
15 14 403.286 1.62407 1.83295 1.89065 0.56725 0.47054 0.52768 0.24694 1.81451 1.7701 2.22956 0.0008713 0.0008713 0.0008713
16 15 432.366 1.60296 1.77482 1.88321 0.64621 0.50549 0.54771 0.25345 1.90397 1.7978 2.26933 0.0008614 0.0008614 0.0008614
17 16 460.773 1.585 1.75494 1.88596 0.57749 0.54072 0.56168 0.26997 1.8621 1.80306 2.25363 0.0008515 0.0008515 0.0008515
18 17 488.433 1.57943 1.73025 1.87363 0.65582 0.5348 0.61148 0.2862 1.83783 1.67926 2.22929 0.0008416 0.0008416 0.0008416
19 18 516.343 1.61389 1.77607 1.88592 0.7136 0.5348 0.60942 0.30526 1.82114 1.61628 2.19264 0.0008317 0.0008317 0.0008317
20 19 544.51 1.54854 1.72495 1.83294 0.62805 0.57509 0.62005 0.30174 1.78549 1.64091 2.14888 0.0008218 0.0008218 0.0008218
21 20 572.423 1.55092 1.73736 1.85153 0.67901 0.53114 0.62093 0.30948 1.77059 1.61006 2.14009 0.0008119 0.0008119 0.0008119
22 21 601.361 1.52205 1.69397 1.80964 0.76412 0.48652 0.59731 0.2649 1.98519 1.70917 2.3803 0.000802 0.000802 0.000802
23 22 629.483 1.5316 1.614 1.81487 0.71008 0.56521 0.64367 0.30881 1.77089 1.61986 2.14916 0.0007921 0.0007921 0.0007921
24 23 658.724 1.5341 1.65514 1.80844 0.67783 0.49817 0.56799 0.26784 1.86351 1.71964 2.19192 0.0007822 0.0007822 0.0007822
25 24 687 1.52939 1.66666 1.8096 0.66576 0.52381 0.6086 0.28432 1.84809 1.64899 2.22731 0.0007723 0.0007723 0.0007723
26 25 715.873 1.50933 1.6483 1.79741 0.73779 0.51533 0.61653 0.31731 1.78849 1.57772 2.17384 0.0007624 0.0007624 0.0007624
27 26 744.428 1.51218 1.62196 1.81704 0.71555 0.5348 0.6478 0.32436 1.74485 1.53469 2.10931 0.0007525 0.0007525 0.0007525
28 27 773.929 1.53387 1.61883 1.81399 0.68278 0.54945 0.62238 0.31383 1.73347 1.59169 2.09269 0.0007426 0.0007426 0.0007426
29 28 801.887 1.48371 1.57748 1.7728 0.71782 0.54945 0.66692 0.33261 1.75739 1.4903 2.09978 0.0007327 0.0007327 0.0007327
30 29 831.001 1.48572 1.59136 1.79191 0.7249 0.58242 0.66111 0.32355 1.71949 1.50765 2.10228 0.0007228 0.0007228 0.0007228
31 30 859.327 1.45483 1.52687 1.75303 0.67645 0.57437 0.63888 0.32724 1.76898 1.52787 2.11377 0.0007129 0.0007129 0.0007129
32 31 889.11 1.46865 1.54256 1.75081 0.79864 0.58974 0.68066 0.34031 1.75179 1.47448 2.09299 0.000703 0.000703 0.000703
33 32 918.029 1.46632 1.50413 1.75214 0.72109 0.58974 0.66843 0.34488 1.75718 1.48461 2.12718 0.0006931 0.0006931 0.0006931
34 33 947.631 1.41437 1.49622 1.73348 0.72224 0.60006 0.6839 0.36537 1.71616 1.46237 2.08305 0.0006832 0.0006832 0.0006832
35 34 975.904 1.42994 1.47095 1.72598 0.69619 0.58242 0.64927 0.34001 1.7465 1.5044 2.13929 0.0006733 0.0006733 0.0006733
36 35 1005.22 1.44603 1.44603 1.73895 0.65841 0.60073 0.67766 0.32651 1.81157 1.48775 2.15242 0.0006634 0.0006634 0.0006634
37 36 1033.79 1.40696 1.47481 1.71477 0.74418 0.56044 0.6773 0.36139 1.69891 1.43329 2.09813 0.0006535 0.0006535 0.0006535
38 37 1063.93 1.42792 1.44625 1.70282 0.70447 0.59374 0.66471 0.3506 1.72008 1.44284 2.10358 0.0006436 0.0006436 0.0006436
39 38 1092.88 1.41928 1.45681 1.71542 0.78082 0.58974 0.66808 0.34928 1.72344 1.44796 2.09133 0.0006337 0.0006337 0.0006337
40 39 1122.39 1.44818 1.50314 1.74108 0.69814 0.61172 0.6813 0.36422 1.73462 1.47567 2.08863 0.0006238 0.0006238 0.0006238
41 40 1150.42 1.41735 1.46857 1.71313 0.69828 0.62733 0.68409 0.37007 1.70661 1.40801 2.07966 0.0006139 0.0006139 0.0006139
42 41 1179.61 1.40746 1.40309 1.70843 0.71639 0.61538 0.68558 0.37525 1.73357 1.39459 2.11059 0.000604 0.000604 0.000604
43 42 1208.25 1.39679 1.42633 1.72209 0.7417 0.61538 0.69596 0.35391 1.73055 1.42919 2.1306 0.0005941 0.0005941 0.0005941
44 43 1237.87 1.39607 1.47324 1.70388 0.71494 0.61538 0.6932 0.36141 1.72957 1.44255 2.08558 0.0005842 0.0005842 0.0005842
45 44 1266.1 1.39155 1.38228 1.66963 0.66972 0.65201 0.676 0.35202 1.73902 1.47218 2.09667 0.0005743 0.0005743 0.0005743
46 45 1296.33 1.3868 1.45397 1.70556 0.73667 0.58409 0.67053 0.34728 1.75891 1.43324 2.09794 0.0005644 0.0005644 0.0005644
47 46 1324.91 1.37198 1.36798 1.68213 0.71756 0.63736 0.70536 0.38345 1.69646 1.39443 2.05638 0.0005545 0.0005545 0.0005545
48 47 1354.56 1.35532 1.3342 1.6444 0.72315 0.61538 0.69339 0.37256 1.68085 1.37145 2.05409 0.0005446 0.0005446 0.0005446
49 48 1383.73 1.37024 1.3845 1.67921 0.70932 0.59341 0.67257 0.35044 1.71974 1.40371 2.08145 0.0005347 0.0005347 0.0005347
50 49 1412.99 1.35807 1.35233 1.66253 0.66086 0.663 0.69412 0.36223 1.70911 1.38339 2.07957 0.0005248 0.0005248 0.0005248
51 50 1441.76 1.35499 1.36345 1.6581 0.6749 0.64103 0.70031 0.37075 1.68456 1.41202 2.05755 0.0005149 0.0005149 0.0005149
52 51 1471.5 1.373 1.33996 1.65845 0.63106 0.64103 0.65869 0.34747 1.7124 1.42015 2.07297 0.000505 0.000505 0.000505
53 52 1500.25 1.37176 1.34797 1.67102 0.62163 0.63792 0.67238 0.35036 1.69432 1.40543 2.05832 0.0004951 0.0004951 0.0004951
54 53 1530.19 1.33781 1.32556 1.63826 0.7217 0.65201 0.70416 0.36952 1.71151 1.39076 2.06534 0.0004852 0.0004852 0.0004852
55 54 1558.78 1.3487 1.28986 1.65672 0.71077 0.63004 0.69473 0.36676 1.72084 1.36169 2.08507 0.0004753 0.0004753 0.0004753
56 55 1588.22 1.35449 1.27138 1.64987 0.72556 0.61172 0.67592 0.35501 1.73507 1.37868 2.07332 0.0004654 0.0004654 0.0004654
57 56 1617.04 1.33647 1.31912 1.64424 0.79665 0.6044 0.70309 0.36764 1.72065 1.36897 2.0577 0.0004555 0.0004555 0.0004555
58 57 1647 1.33656 1.28157 1.64613 0.7561 0.58242 0.67329 0.35537 1.74467 1.40858 2.0744 0.0004456 0.0004456 0.0004456
59 58 1676 1.32228 1.292 1.61397 0.72257 0.64875 0.68658 0.36662 1.7138 1.35806 2.08002 0.0004357 0.0004357 0.0004357
60 59 1705.28 1.33019 1.27701 1.63897 0.7593 0.61538 0.7018 0.38152 1.68064 1.33396 2.06308 0.0004258 0.0004258 0.0004258
61 60 1734.22 1.32649 1.2398 1.63631 0.75155 0.64267 0.71109 0.377 1.67655 1.35448 2.06067 0.0004159 0.0004159 0.0004159
62 61 1764.09 1.31355 1.28887 1.63525 0.72713 0.66375 0.71203 0.36788 1.70207 1.35984 2.0649 0.000406 0.000406 0.000406
63 62 1792.55 1.29966 1.24102 1.61156 0.7514 0.64103 0.70403 0.36626 1.74834 1.31034 2.09392 0.0003961 0.0003961 0.0003961
64 63 1822.45 1.29534 1.22374 1.59397 0.75162 0.65398 0.72504 0.38762 1.6981 1.34321 2.06248 0.0003862 0.0003862 0.0003862
65 64 1851.41 1.30964 1.23487 1.63502 0.78312 0.60842 0.71096 0.38537 1.67323 1.353 2.02626 0.0003763 0.0003763 0.0003763
66 65 1880.51 1.30114 1.23135 1.62139 0.81397 0.62637 0.74032 0.37952 1.69302 1.31631 2.052 0.0003664 0.0003664 0.0003664
67 66 1908.67 1.31567 1.24804 1.61992 0.76075 0.65934 0.74534 0.39731 1.64972 1.2835 2.02285 0.0003565 0.0003565 0.0003565
68 67 1937.96 1.32494 1.2248 1.62887 0.769 0.62191 0.71163 0.3783 1.68745 1.32329 2.05268 0.0003466 0.0003466 0.0003466
69 68 1966.83 1.28643 1.23239 1.59691 0.71399 0.65201 0.70042 0.3782 1.6903 1.34443 2.03825 0.0003367 0.0003367 0.0003367
70 69 1996.71 1.26482 1.20995 1.59215 0.72707 0.66356 0.71651 0.38626 1.68262 1.29941 2.04485 0.0003268 0.0003268 0.0003268
71 70 2024.93 1.26988 1.18372 1.58875 0.71215 0.65568 0.71815 0.38141 1.70194 1.32852 2.06548 0.0003169 0.0003169 0.0003169
72 71 2053.63 1.27559 1.19844 1.58361 0.76639 0.65568 0.72996 0.39283 1.68092 1.33901 2.03666 0.000307 0.000307 0.000307
73 72 2082.51 1.25845 1.19462 1.57502 0.70026 0.67033 0.70276 0.38445 1.67556 1.29985 2.0251 0.0002971 0.0002971 0.0002971
74 73 2112.07 1.25379 1.20852 1.57194 0.78795 0.61905 0.72304 0.38769 1.6873 1.28427 2.05299 0.0002872 0.0002872 0.0002872
75 74 2140.85 1.21995 1.16068 1.54718 0.78243 0.64835 0.71847 0.38332 1.71292 1.27937 2.09599 0.0002773 0.0002773 0.0002773
76 75 2170.5 1.25818 1.16842 1.58352 0.72489 0.62637 0.70929 0.38139 1.72948 1.28487 2.10326 0.0002674 0.0002674 0.0002674
77 76 2199.22 1.25354 1.19406 1.56063 0.74872 0.69231 0.73686 0.38577 1.69979 1.24654 2.10326 0.0002575 0.0002575 0.0002575
78 77 2229.27 1.20462 1.13439 1.53476 0.78503 0.6337 0.72217 0.38736 1.7053 1.24252 2.08779 0.0002476 0.0002476 0.0002476
79 78 2257.68 1.24206 1.13562 1.5491 0.79052 0.68864 0.74571 0.39341 1.68399 1.25069 2.0552 0.0002377 0.0002377 0.0002377
80 79 2287.31 1.21462 1.1032 1.53564 0.73417 0.68498 0.71693 0.39071 1.7011 1.28875 2.0674 0.0002278 0.0002278 0.0002278
81 80 2315.56 1.23937 1.13075 1.56067 0.83863 0.65934 0.73018 0.39436 1.69005 1.26745 2.0662 0.0002179 0.0002179 0.0002179
82 81 2344.49 1.19883 1.07737 1.52873 0.82254 0.71062 0.7548 0.39909 1.70075 1.20194 2.07956 0.000208 0.000208 0.000208
83 82 2373.17 1.23758 1.14143 1.57432 0.80165 0.68498 0.74513 0.39183 1.6952 1.24219 2.07024 0.0001981 0.0001981 0.0001981
84 83 2402.74 1.21373 1.12215 1.52703 0.81774 0.64095 0.72875 0.38923 1.72085 1.2454 2.07837 0.0001882 0.0001882 0.0001882
85 84 2431.69 1.22851 1.1158 1.54509 0.747 0.69231 0.7353 0.39125 1.70159 1.24814 2.06485 0.0001783 0.0001783 0.0001783
86 85 2460.59 1.19888 1.10579 1.5364 0.75301 0.69239 0.73957 0.38729 1.70229 1.23599 2.06932 0.0001684 0.0001684 0.0001684
87 86 2488.78 1.21901 1.09734 1.53882 0.70893 0.69963 0.73596 0.39131 1.69299 1.25542 2.06595 0.0001585 0.0001585 0.0001585
88 87 2517.74 1.20184 1.09263 1.51732 0.80053 0.69092 0.76069 0.40494 1.67436 1.22855 2.0473 0.0001486 0.0001486 0.0001486
89 88 2546.54 1.18685 1.05577 1.51419 0.81722 0.65511 0.7303 0.40181 1.66887 1.26043 2.04557 0.0001387 0.0001387 0.0001387
90 89 2576.51 1.19916 1.10545 1.53913 0.82443 0.68498 0.76331 0.40481 1.67763 1.21459 2.05347 0.0001288 0.0001288 0.0001288
91 90 2605.07 1.21587 1.10215 1.53568 0.79741 0.68132 0.74663 0.39784 1.67961 1.24023 2.05085 0.0001189 0.0001189 0.0001189
92 91 2642.42 1.17656 0.94854 1.58452 0.74634 0.68132 0.71606 0.37783 1.71594 1.26458 2.07223 0.000109 0.000109 0.000109
93 92 2671.49 1.13141 0.88995 1.5602 0.77676 0.68825 0.73647 0.39443 1.67278 1.2426 2.03472 9.91e-05 9.91e-05 9.91e-05
94 93 2701.12 1.13255 0.86812 1.55052 0.79337 0.67507 0.75465 0.40744 1.6533 1.21336 2.01721 8.92e-05 8.92e-05 8.92e-05
95 94 2729.41 1.08828 0.84638 1.50511 0.8043 0.66667 0.74972 0.40504 1.66871 1.20312 2.04215 7.93e-05 7.93e-05 7.93e-05
96 95 2758.52 1.13154 0.82432 1.53812 0.8114 0.66187 0.74411 0.39931 1.66226 1.20311 2.02831 6.94e-05 6.94e-05 6.94e-05
97 96 2788.23 1.07387 0.80326 1.49687 0.79437 0.69597 0.74904 0.40287 1.67852 1.20329 2.05182 5.95e-05 5.95e-05 5.95e-05
98 97 2817.76 1.08308 0.8143 1.50047 0.814 0.65725 0.74502 0.40494 1.67537 1.19519 2.04756 4.96e-05 4.96e-05 4.96e-05
99 98 2846.97 1.09165 0.7954 1.49432 0.80317 0.65568 0.7437 0.40397 1.67076 1.20234 2.04154 3.97e-05 3.97e-05 3.97e-05
100 99 2876.07 1.08929 0.79844 1.49546 0.81373 0.67399 0.74796 0.40965 1.66571 1.20279 2.04202 2.98e-05 2.98e-05 2.98e-05
101 100 2904.88 1.0537 0.75972 1.48027 0.81612 0.68864 0.75524 0.4107 1.66607 1.18487 2.04309 1.99e-05 1.99e-05 1.99e-05

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save