Compare commits

...

61 Commits
main ... ch6

Author SHA1 Message Date
Yu Chen 3aa7fac88a add cargo fmt in Makefile, and exec make fmt
3 years ago
Yifan Wu daf439cff4 Fix #69.
3 years ago
chyyuu 40b5370f6b
Merge pull request #70 from hypocrasy/ch6
3 years ago
hypocrasy 094ad2f09f Merge branch 'ch6' of https://github.com/hypocrasy/rCore-Tutorial-v3-comment into ch6
3 years ago
hypocrasy 2bd1e826fd Add comments in ch6
3 years ago
zhangy cb50e377b2
fix build doc
3 years ago
hypocrasy f9346edad1 Add comments in ch6
3 years ago
Yifan Wu cea2febe35 Bump Rust to nightly-2022-04-11 && support debugging in release mode
3 years ago
Yu Chen 81e412fa80 add usr/src/bin/cat_filea.rs to show text file: filea's contents
3 years ago
Yu Chen 0c2244d9c5 update README
3 years ago
Yu Chen b0b0539050 add CI for build-doc
3 years ago
Yifan Wu 04bb890fb7 Add boards/ && cargo clippy
3 years ago
Yifan Wu b96db03e48 cargo clippy & fmt
3 years ago
Yifan Wu 8917eb7acc Bump Rust to nightly-2022-01-19
3 years ago
Yifan Wu 15a7033af6 Cont the last commit.
3 years ago
Yifan Wu b7476045cc Maximum concurrent processes from 40/35->30.
3 years ago
Yifan Wu 7893f29ba6 Update .gitignore
3 years ago
Yifan Wu b1b26fd788 Remove os/src/loader.rs
4 years ago
Yifan Wu e9597d901b Remove cmdargs and i/o redirection.
4 years ago
Yifan Wu 5389b7adca Remove pipe && Fix cat and huge_write.
4 years ago
Yifan Wu 57f7debbc6 Substituted to the original ch7 code.
4 years ago
Yifan Wu 4fdd55e2e8 Now PageTable::unmap calls PageTable::find_pte instead of PageTable::find_pte_create.
4 years ago
Yifan Wu bbaad9a719 Kernel cannot dump now.
4 years ago
Yifan Wu 1c05b9321d User base 0x0->0x10000
4 years ago
Yifan Wu 48109c34d0 Bump to rust nightly-2022-01-01, feature global_asm,asm->stable
4 years ago
Yifan Wu 45280db169 Bump to Rust nightly 2021-12-15
4 years ago
Yifan Wu 68151ed6c5 Update os/Makefile, rm ... -f -> rm -f ...
4 years ago
Yu Chen 59d173f140 update .gitignore, README.md, dev-env-info.md
4 years ago
Yifan Wu 1f86903267 Now construction of PA/VA only uses 56/39 bits.
4 years ago
Yifan Wu 9d6346ade7 rust->nightly-2021-10-15,cargo-binutils->0.3.3
4 years ago
Yifan Wu 6695610c63 Update rustc && rustsbi
4 years ago
Yu Chen 6a08973359 update to rustc 1.56.0-nightly (08095fc1f 2021-07-26)
4 years ago
Yifan Wu aea36d1e2f Bump rustsbi to qemu[d4968dd2] k210[b689314e].
4 years ago
Yifan Wu 3c9b6d7d14 spin::Mutex->UPSafeCell
4 years ago
Yifan Wu c82861f205 Downgrade cargo-binutils to 0.2.0
4 years ago
Yifan Wu 7132f24762 Bump rustsbi to 0.2.0-alpha.1[81d53d8]
4 years ago
Yifan Wu 0b33985d4b Link small sections in linker
4 years ago
Yifan Wu 0f6d02f18b Do not fetch tools when running on qemu.
4 years ago
Yifan Wu b11082f9bd Add Ubuntu18.04 docker
4 years ago
Yifan Wu 291d5b210f Fix overflow bug when ceiling va
4 years ago
Yifan Wu 3a81928da6 Close all pipes in pipetest.
4 years ago
Yifan Wu d6056ef07c Remove Any Trait of File
4 years ago
Yifan Wu 946b37a237 Fix lock uses in ch5
4 years ago
Yifan Wu a15a76edb9 Mutex -> RefCell in Processor.
4 years ago
Yifan Wu e769804090 Fix alignment in os/build.rs
4 years ago
Yifan Wu 66d7723c72 Update app loader.
4 years ago
Yifan Wu fb8a24fbad Replace TCB.inner.block with TCB::acquire_inner_lock
4 years ago
Yifan Wu f1e772a984 Fix other usertests: xstate -> exit_code
4 years ago
Yifan Wu 5e798029b0 Fix user_shell
4 years ago
Yifan Wu 0ecf88ade6 Move kflash.py out of proj.
4 years ago
Yifan Wu 982b369a51 Bump rustsbi to 0.1.1 && make config of qemu/k210 different
4 years ago
Yifan Wu 58897f477e Fix exit_code in user
4 years ago
Yifan Wu f4611d16d5 Update os/Makefile && Update rust to 2021-01-30
4 years ago
Yifan Wu 588ea619ab Fix CLOCK_FREQ.
4 years ago
Yifan Wu 375b787434 Do not clone KERNEL_SPACE in mm::init
4 years ago
Yifan Wu 77ba429c77 Fix k210 CLOCK_FREQ
4 years ago
Yifan Wu fad341d03d Fix os/Makefile: Support macOS
5 years ago
Yu Chen 45a17c1725 rust-toochain --> nightly
5 years ago
Yifan Wu 5730bac89e Move some variable name to task_cx to task_cx_ptr2(ch5 ver).
5 years ago
Yifan Wu 87a3500b34 Remove meaningless sstatus::set_sie() when initializing.
5 years ago
Yifan Wu 30a0de23a1 Add env.
5 years ago

@ -0,0 +1,25 @@
name: Build Rust Doc
on: [push]
env:
CARGO_TERM_COLOR: always
jobs:
build-doc:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Build doc
run: |
rustup target add riscv64gc-unknown-none-elf
rustup component add llvm-tools-preview
rustup component add rust-src
cd os
cargo doc --document-private-items --verbose
- name: Push to gh-pages
uses: peaceiris/actions-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./os/target/riscv64gc-unknown-none-elf/doc
destination_dir: ${{ github.ref_name }}

16
.gitignore vendored

@ -1,8 +1,18 @@
.idea/*
os/target/*
os/.idea/*
.idea
Cargo.lock
target
os/src/link_app.S
os/src/linker.ld
os/last-*
os/Cargo.lock
os/.gdb_history
user/build
user/target/*
user/.idea/*
user/Cargo.lock
easy-fs/Cargo.lock
easy-fs/target/*
easy-fs-fuse/Cargo.lock
easy-fs-fuse/target/*
tools/
pushall.sh

@ -0,0 +1,40 @@
FROM ubuntu:18.04
LABEL maintainer="dinghao188" \
version="1.1" \
description="ubuntu 18.04 with tools for tsinghua's rCore-Tutorial-V3"
#install some deps
RUN set -x \
&& apt-get update \
&& apt-get install -y curl wget autoconf automake autotools-dev curl libmpc-dev libmpfr-dev libgmp-dev \
gawk build-essential bison flex texinfo gperf libtool patchutils bc xz-utils \
zlib1g-dev libexpat-dev pkg-config libglib2.0-dev libpixman-1-dev git tmux python3
#install rust and qemu
RUN set -x; \
RUSTUP='/root/rustup.sh' \
&& cd $HOME \
#install rust
&& curl https://sh.rustup.rs -sSf > $RUSTUP && chmod +x $RUSTUP \
&& $RUSTUP -y --default-toolchain nightly --profile minimal \
#compile qemu
&& wget https://ftp.osuosl.org/pub/blfs/conglomeration/qemu/qemu-5.0.0.tar.xz \
&& tar xvJf qemu-5.0.0.tar.xz \
&& cd qemu-5.0.0 \
&& ./configure --target-list=riscv64-softmmu,riscv64-linux-user \
&& make -j$(nproc) install \
&& cd $HOME && rm -rf qemu-5.0.0 qemu-5.0.0.tar.xz
#for chinese network
RUN set -x; \
APT_CONF='/etc/apt/sources.list'; \
CARGO_CONF='/root/.cargo/config'; \
BASHRC='/root/.bashrc' \
&& echo 'export RUSTUP_DIST_SERVER=https://mirrors.ustc.edu.cn/rust-static' >> $BASHRC \
&& echo 'export RUSTUP_UPDATE_ROOT=https://mirrors.ustc.edu.cn/rust-static/rustup' >> $BASHRC \
&& touch $CARGO_CONF \
&& echo '[source.crates-io]' > $CARGO_CONF \
&& echo "replace-with = 'ustc'" >> $CARGO_CONF \
&& echo '[source.ustc]' >> $CARGO_CONF \
&& echo 'registry = "git://mirrors.ustc.edu.cn/crates.io-index"' >> $CARGO_CONF

@ -0,0 +1,10 @@
DOCKER_NAME ?= dinghao188/rcore-tutorial
.PHONY: docker build_docker
docker:
docker run --rm -it --mount type=bind,source=$(shell pwd),destination=/mnt ${DOCKER_NAME}
build_docker:
docker build -t ${DOCKER_NAME} .
fmt:
cd easy-fs; cargo fmt; cd ../easy-fs-fuse cargo fmt; cd ../os ; cargo fmt; cd ../user; cargo fmt; cd ..

@ -1,2 +1,260 @@
# rCore-Tutorial-v3
rCore-Tutorial version 3.
rCore-Tutorial version 3.5. See the [Documentation in Chinese](https://rcore-os.github.io/rCore-Tutorial-Book-v3/).
rCore-Tutorial API Docs. See the [API Docs of Ten OSes ](#OS-API-DOCS)
Official QQ group number: 735045051
## news
- 25/01/2022: Version 3.6.0 is on the way! Now we directly update the code on chX branches, please periodically check if there are any updates.
## Overview
This project aims to show how to write an **Unix-like OS** running on **RISC-V** platforms **from scratch** in **[Rust](https://www.rust-lang.org/)** for **beginners** without any background knowledge about **computer architectures, assembly languages or operating systems**.
## Features
* Platform supported: `qemu-system-riscv64` simulator or dev boards based on [Kendryte K210 SoC](https://canaan.io/product/kendryteai) such as [Maix Dock](https://www.seeedstudio.com/Sipeed-MAIX-Dock-p-4815.html)
* OS
* concurrency of multiple processes each of which contains mutiple native threads
* preemptive scheduling(Round-Robin algorithm)
* dynamic memory management in kernel
* virtual memory
* a simple file system with a block cache
* an interactive shell in the userspace
* **only 4K+ LoC**
* [A detailed documentation in Chinese](https://rcore-os.github.io/rCore-Tutorial-Book-v3/) in spite of the lack of comments in the code(English version is not available at present)
## Prerequisites
### Install Rust
See [official guide](https://www.rust-lang.org/tools/install).
Install some tools:
```sh
$ rustup target add riscv64gc-unknown-none-elf
$ cargo install cargo-binutils --vers =0.3.3
$ rustup component add llvm-tools-preview
$ rustup component add rust-src
```
### Install Qemu
Here we manually compile and install Qemu 5.0.0. For example, on Ubuntu 18.04:
```sh
# install dependency packages
$ sudo apt install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev libgmp-dev \
gawk build-essential bison flex texinfo gperf libtool patchutils bc \
zlib1g-dev libexpat-dev pkg-config libglib2.0-dev libpixman-1-dev git tmux python3 python3-pip
# download Qemu source code
$ wget https://download.qemu.org/qemu-5.0.0.tar.xz
# extract to qemu-5.0.0/
$ tar xvJf qemu-5.0.0.tar.xz
$ cd qemu-5.0.0
# build
$ ./configure --target-list=riscv64-softmmu,riscv64-linux-user
$ make -j$(nproc)
```
Then, add following contents to `~/.bashrc`(please adjust these paths according to your environment):
```
export PATH=$PATH:/home/shinbokuow/Downloads/built/qemu-5.0.0
export PATH=$PATH:/home/shinbokuow/Downloads/built/qemu-5.0.0/riscv64-softmmu
export PATH=$PATH:/home/shinbokuow/Downloads/built/qemu-5.0.0/riscv64-linux-user
```
Finally, update the current shell:
```sh
$ source ~/.bashrc
```
Now we can check the version of Qemu:
```sh
$ qemu-system-riscv64 --version
QEMU emulator version 5.0.0
Copyright (c) 2003-2020 Fabrice Bellard and the QEMU Project developers
```
### Install RISC-V GNU Embedded Toolchain(including GDB)
Download the compressed file according to your platform From [Sifive website](https://www.sifive.com/software)(Ctrl+F 'toolchain').
Extract it and append the location of the 'bin' directory under its root directory to `$PATH`.
For example, we can check the version of GDB:
```sh
$ riscv64-unknown-elf-gdb --version
GNU gdb (SiFive GDB-Metal 10.1.0-2020.12.7) 10.1
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
```
### Install serial tools(Optional, if you want to run on K210)
```sh
$ pip3 install pyserial
$ sudo apt install python3-serial
```
## Run our project
### Qemu
```sh
$ git clone https://github.com/rcore-os/rCore-Tutorial-v3.git
$ cd rCore-Tutorial-v3/os
$ make run
```
After outputing some debug messages, the kernel lists all the applications available and enter the user shell:
```
/**** APPS ****
mpsc_sem
usertests
pipetest
forktest2
cat
initproc
race_adder_loop
threads_arg
race_adder_mutex_spin
race_adder_mutex_blocking
forktree
user_shell
huge_write
race_adder
race_adder_atomic
threads
stack_overflow
filetest_simple
forktest_simple
cmdline_args
run_pipe_test
forktest
matrix
exit
fantastic_text
sleep_simple
yield
hello_world
pipe_large_test
sleep
phil_din_mutex
**************/
Rust user shell
>>
```
You can run any application except for `initproc` and `user_shell` itself. To run an application, just input its filename and hit enter. `usertests` can run a bunch of applications, thus it is recommended.
Type `Ctrl+a` then `x` to exit Qemu.
### K210
Before chapter 6, you do not need a SD card:
```sh
$ git clone https://github.com/rcore-os/rCore-Tutorial-v3.git
$ cd rCore-Tutorial-v3/os
$ make run BOARD=k210
```
From chapter 6, before running the kernel, we should insert a SD card into PC and manually write the filesystem image to it:
```sh
$ cd rCore-Tutorial-v3/os
$ make sdcard
```
By default it will overwrite the device `/dev/sdb` which is the SD card, but you can provide another location. For example, `make sdcard SDCARD=/dev/sdc`.
After that, remove the SD card from PC and insert it to the slot of K210. Connect the K210 to PC and then:
```sh
$ git clone https://github.com/rcore-os/rCore-Tutorial-v3.git
$ cd rCore-Tutorial-v3/os
$ make run BOARD=k210
```
Type `Ctrl+]` to disconnect from K210.
## Rustdoc
Currently it can only help you view the code since only a tiny part of the code has been documented.
You can open a doc html of `os` using `cargo doc --no-deps --open` under `os` directory.
### OS-API-DOCS
The API Docs for Ten OS
1. [Lib-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch1/os/index.html)
1. [Batch-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch2/os/index.html)
1. [MultiProg-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch3-coop/os/index.html)
1. [TimeSharing-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch3/os/index.html)
1. [AddrSpace-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch4/os/index.html)
1. [Process-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch5/os/index.html)
1. [FileSystem-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch6/os/index.html)
1. [IPC-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch7/os/index.html)
1. [SyncMutex-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch8/os/index.html)
1. [IODevice-OS API doc](https://learningos.github.io/rCore-Tutorial-v3/ch9/os/index.html)
## Working in progress
Our first release 3.5.0 (chapter 1-7) has been published.
There will be 9 chapters in our next release 3.6.0, where 2 new chapters will be added:
* chapter 8: synchronization on a uniprocessor
* chapter 9: I/O devices
Current version is 3.6.0-alpha.1 and we are still working on it.
Here are the updates since 3.5.0:
### Completed
* [x] automatically clean up and rebuild before running our project on a different platform
* [x] fix `power` series application in early chapters, now you can find modulus in the output
* [x] use `UPSafeCell` instead of `RefCell` or `spin::Mutex` in order to access static data structures and adjust its API so that it cannot be borrowed twice at a time(mention `& .exclusive_access().task[0]` in `run_first_task`)
* [x] move `TaskContext` into `TaskControlBlock` instead of restoring it in place on kernel stack(since ch3), eliminating annoying `task_cx_ptr2`
* [x] replace `llvm_asm!` with `asm!`
* [x] expand the fs image size generated by `rcore-fs-fuse` to 128MiB
* [x] add a new test named `huge_write` which evaluates the fs performance(qemu\~500KiB/s k210\~50KiB/s)
* [x] flush all block cache to disk after a fs transaction which involves write operation
* [x] replace `spin::Mutex` with `UPSafeCell` before SMP chapter
* [x] add codes for a new chapter about synchronization & mutual exclusion(uniprocessor only)
* [x] bug fix: we should call `find_pte` rather than `find_pte_create` in `PageTable::unmap`
* [x] clarify: "check validity of level-3 pte in `find_pte` instead of checking it outside this function" should not be a bug
* [x] code of chapter 8: synchronization on a uniprocessor
* [x] switch the code of chapter 6 and chapter 7
* [x] support signal mechanism in chapter 7/8(only works for apps with a single thread)
* [x] Add boards/ directory and support rustdoc, for example you can use `cargo doc --no-deps --open` to view the documentation of a crate
### Todo(High priority)
* [ ] review documentation, current progress: 5/9
* [ ] support user-level sync primitives in chapter 8
* [ ] code of chapter 9: device drivers based on interrupts, including UART and block devices
* [ ] use old fs image optionally, do not always rebuild the image
* [ ] add new system calls: getdents64/fstat
* [ ] shell functionality improvement(to be continued...)
* [ ] give every non-zero process exit code an unique and clear error type
* [ ] effective error handling of mm module
### Todo(Low priority)
* [ ] rewrite practice doc and remove some inproper questions
* [ ] provide smooth debug experience at a Rust source code level
* [ ] format the code using official tools
### Crates
We will add them later.

Binary file not shown.

Binary file not shown.

@ -0,0 +1,18 @@
# rCore-Tutorial-v3
rCore-Tutorial version 3.x
## Dependency
### Binaries
* rustc: 1.57.0-nightly (e1e9319d9 2021-10-14)
* cargo-binutils: 0.3.3
* qemu: 5.0.0
* rustsbi-lib: 0.2.0-alpha.4
rustsbi-qemu: d4968dd2
rustsbi-k210: b689314e

@ -0,0 +1,3 @@
.idea/
target/
Cargo.lock

@ -0,0 +1,12 @@
[package]
name = "easy-fs-fuse"
version = "0.1.0"
authors = ["Yifan Wu <shinbokuow@163.com>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
clap = "2.33.3"
easy-fs = { path = "../easy-fs" }
rand = "0.8.0"

@ -0,0 +1,151 @@
use clap::{App, Arg};
use easy_fs::{BlockDevice, EasyFileSystem};
use std::fs::{read_dir, File, OpenOptions};
use std::io::{Read, Seek, SeekFrom, Write};
use std::sync::Arc;
use std::sync::Mutex;
const BLOCK_SZ: usize = 512;
struct BlockFile(Mutex<File>);
impl BlockDevice for BlockFile {
fn read_block(&self, block_id: usize, buf: &mut [u8]) {
let mut file = self.0.lock().unwrap();
file.seek(SeekFrom::Start((block_id * BLOCK_SZ) as u64))
.expect("Error when seeking!");
assert_eq!(file.read(buf).unwrap(), BLOCK_SZ, "Not a complete block!");
}
fn write_block(&self, block_id: usize, buf: &[u8]) {
let mut file = self.0.lock().unwrap();
file.seek(SeekFrom::Start((block_id * BLOCK_SZ) as u64))
.expect("Error when seeking!");
assert_eq!(file.write(buf).unwrap(), BLOCK_SZ, "Not a complete block!");
}
}
fn main() {
easy_fs_pack().expect("Error when packing easy-fs!");
}
fn easy_fs_pack() -> std::io::Result<()> {
let matches = App::new("EasyFileSystem packer")
.arg(
Arg::with_name("source")
.short("s")
.long("source")
.takes_value(true)
.help("Executable source dir(with backslash)"),
)
.arg(
Arg::with_name("target")
.short("t")
.long("target")
.takes_value(true)
.help("Executable target dir(with backslash)"),
)
.get_matches();
let src_path = matches.value_of("source").unwrap();
let target_path = matches.value_of("target").unwrap();
println!("src_path = {}\ntarget_path = {}", src_path, target_path);
let block_file = Arc::new(BlockFile(Mutex::new({
let f = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.open(format!("{}{}", target_path, "fs.img"))?;
f.set_len(16 * 2048 * 512).unwrap();
f
})));
// 16MiB, at most 4095 files
let efs = EasyFileSystem::create(block_file, 16 * 2048, 1);
let root_inode = Arc::new(EasyFileSystem::root_inode(&efs));
let apps: Vec<_> = read_dir(src_path)
.unwrap()
.into_iter()
.map(|dir_entry| {
let mut name_with_ext = dir_entry.unwrap().file_name().into_string().unwrap();
name_with_ext.drain(name_with_ext.find('.').unwrap()..name_with_ext.len());
name_with_ext
})
.collect();
for app in apps {
// load app data from host file system
let mut host_file = File::open(format!("{}{}", target_path, app)).unwrap();
let mut all_data: Vec<u8> = Vec::new();
host_file.read_to_end(&mut all_data).unwrap();
// create a file in easy-fs
let inode = root_inode.create(app.as_str()).unwrap();
// write data to easy-fs
inode.write_at(0, all_data.as_slice());
}
// list apps
for app in root_inode.ls() {
println!("{}", app);
}
Ok(())
}
#[test]
fn efs_test() -> std::io::Result<()> {
let block_file = Arc::new(BlockFile(Mutex::new({
let f = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.open("target/fs.img")?;
f.set_len(8192 * 512).unwrap();
f
})));
EasyFileSystem::create(block_file.clone(), 4096, 1);
let efs = EasyFileSystem::open(block_file.clone());
let root_inode = EasyFileSystem::root_inode(&efs);
root_inode.create("filea");
root_inode.create("fileb");
for name in root_inode.ls() {
println!("{}", name);
}
let filea = root_inode.find("filea").unwrap();
let greet_str = "Hello, world!";
filea.write_at(0, greet_str.as_bytes());
//let mut buffer = [0u8; 512];
let mut buffer = [0u8; 233];
let len = filea.read_at(0, &mut buffer);
assert_eq!(greet_str, core::str::from_utf8(&buffer[..len]).unwrap(),);
let mut random_str_test = |len: usize| {
filea.clear();
assert_eq!(filea.read_at(0, &mut buffer), 0,);
let mut str = String::new();
use rand;
// random digit
for _ in 0..len {
str.push(char::from('0' as u8 + rand::random::<u8>() % 10));
}
filea.write_at(0, str.as_bytes());
let mut read_buffer = [0u8; 127];
let mut offset = 0usize;
let mut read_str = String::new();
loop {
let len = filea.read_at(offset, &mut read_buffer);
if len == 0 {
break;
}
offset += len;
read_str.push_str(core::str::from_utf8(&read_buffer[..len]).unwrap());
}
assert_eq!(str, read_str);
};
random_str_test(4 * BLOCK_SZ);
random_str_test(8 * BLOCK_SZ + BLOCK_SZ / 2);
random_str_test(100 * BLOCK_SZ);
random_str_test(70 * BLOCK_SZ + BLOCK_SZ / 7);
random_str_test((12 + 128) * BLOCK_SZ);
random_str_test(400 * BLOCK_SZ);
random_str_test(1000 * BLOCK_SZ);
random_str_test(2000 * BLOCK_SZ);
Ok(())
}

@ -0,0 +1,3 @@
.idea/
target/
Cargo.lock

@ -0,0 +1,14 @@
[package]
name = "easy-fs"
version = "0.1.0"
authors = ["Yifan Wu <shinbokuow@163.com>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
spin = "0.7.0"
lazy_static = { version = "1.4.0", features = ["spin_no_std"] }
[profile.release]
debug = true

@ -0,0 +1,70 @@
use super::{get_block_cache, BlockDevice, BLOCK_SZ};
use alloc::sync::Arc;
/// A bitmap block
type BitmapBlock = [u64; 64];
/// Number of bits in a block
const BLOCK_BITS: usize = BLOCK_SZ * 8;
/// A bitmap
pub struct Bitmap {
start_block_id: usize,
blocks: usize,
}
/// Decompose bits into (block_pos, bits64_pos, inner_pos)
fn decomposition(mut bit: usize) -> (usize, usize, usize) {
let block_pos = bit / BLOCK_BITS;
bit %= BLOCK_BITS;
(block_pos, bit / 64, bit % 64)
}
impl Bitmap {
/// A new bitmap from start block id and number of blocks
pub fn new(start_block_id: usize, blocks: usize) -> Self {
Self {
start_block_id,
blocks,
}
}
/// Allocate a new block from a block device
pub fn alloc(&self, block_device: &Arc<dyn BlockDevice>) -> Option<usize> {
for block_id in 0..self.blocks {
let pos = get_block_cache(
block_id + self.start_block_id as usize,
Arc::clone(block_device),
)
.lock()
.modify(0, |bitmap_block: &mut BitmapBlock| {
if let Some((bits64_pos, inner_pos)) = bitmap_block
.iter()
.enumerate()
.find(|(_, bits64)| **bits64 != u64::MAX)
.map(|(bits64_pos, bits64)| (bits64_pos, bits64.trailing_ones() as usize))
{
// modify cache
bitmap_block[bits64_pos] |= 1u64 << inner_pos;
Some(block_id * BLOCK_BITS + bits64_pos * 64 + inner_pos as usize)
} else {
None
}
});
if pos.is_some() {
return pos;
}
}
None
}
/// Deallocate a block
pub fn dealloc(&self, block_device: &Arc<dyn BlockDevice>, bit: usize) {
let (block_pos, bits64_pos, inner_pos) = decomposition(bit);
get_block_cache(block_pos + self.start_block_id, Arc::clone(block_device))
.lock()
.modify(0, |bitmap_block: &mut BitmapBlock| {
assert!(bitmap_block[bits64_pos] & (1u64 << inner_pos) > 0);
bitmap_block[bits64_pos] -= 1u64 << inner_pos;
});
}
/// Get the max number of allocatable blocks
pub fn maximum(&self) -> usize {
self.blocks * BLOCK_BITS
}
}

@ -0,0 +1,144 @@
use super::{BlockDevice, BLOCK_SZ};
use alloc::collections::VecDeque;
use alloc::sync::Arc;
use lazy_static::*;
use spin::Mutex;
/// Cached block inside memory
pub struct BlockCache {
/// cached block data
cache: [u8; BLOCK_SZ],
/// underlying block id
block_id: usize,
/// underlying block device
block_device: Arc<dyn BlockDevice>,
/// whether the block is dirty
modified: bool,
}
impl BlockCache {
/// Load a new BlockCache from disk.
pub fn new(block_id: usize, block_device: Arc<dyn BlockDevice>) -> Self {
let mut cache = [0u8; BLOCK_SZ];
block_device.read_block(block_id, &mut cache);
Self {
cache,
block_id,
block_device,
modified: false,
}
}
/// Get the address of an offset inside the cached block data
fn addr_of_offset(&self, offset: usize) -> usize {
&self.cache[offset] as *const _ as usize
}
pub fn get_ref<T>(&self, offset: usize) -> &T
where
T: Sized,
{
let type_size = core::mem::size_of::<T>();
assert!(offset + type_size <= BLOCK_SZ);
let addr = self.addr_of_offset(offset);
unsafe { &*(addr as *const T) }
}
pub fn get_mut<T>(&mut self, offset: usize) -> &mut T
where
T: Sized,
{
let type_size = core::mem::size_of::<T>();
assert!(offset + type_size <= BLOCK_SZ);
self.modified = true;
let addr = self.addr_of_offset(offset);
unsafe { &mut *(addr as *mut T) }
}
pub fn read<T, V>(&self, offset: usize, f: impl FnOnce(&T) -> V) -> V {
f(self.get_ref(offset))
}
pub fn modify<T, V>(&mut self, offset: usize, f: impl FnOnce(&mut T) -> V) -> V {
f(self.get_mut(offset))
}
pub fn sync(&mut self) {
if self.modified {
self.modified = false;
self.block_device.write_block(self.block_id, &self.cache);
}
}
}
impl Drop for BlockCache {
fn drop(&mut self) {
self.sync()
}
}
/// Use a block cache of 16 blocks
const BLOCK_CACHE_SIZE: usize = 16;
pub struct BlockCacheManager {
queue: VecDeque<(usize, Arc<Mutex<BlockCache>>)>,
}
impl BlockCacheManager {
pub fn new() -> Self {
Self {
queue: VecDeque::new(),
}
}
pub fn get_block_cache(
&mut self,
block_id: usize,
block_device: Arc<dyn BlockDevice>,
) -> Arc<Mutex<BlockCache>> {
if let Some(pair) = self.queue.iter().find(|pair| pair.0 == block_id) {
Arc::clone(&pair.1)
} else {
// substitute
if self.queue.len() == BLOCK_CACHE_SIZE {
// from front to tail
if let Some((idx, _)) = self
.queue
.iter()
.enumerate()
.find(|(_, pair)| Arc::strong_count(&pair.1) == 1)
{
self.queue.drain(idx..=idx);
} else {
panic!("Run out of BlockCache!");
}
}
// load block into mem and push back
let block_cache = Arc::new(Mutex::new(BlockCache::new(
block_id,
Arc::clone(&block_device),
)));
self.queue.push_back((block_id, Arc::clone(&block_cache)));
block_cache
}
}
}
lazy_static! {
/// The global block cache manager
pub static ref BLOCK_CACHE_MANAGER: Mutex<BlockCacheManager> =
Mutex::new(BlockCacheManager::new());
}
/// Get the block cache corresponding to the given block id and block device
pub fn get_block_cache(
block_id: usize,
block_device: Arc<dyn BlockDevice>,
) -> Arc<Mutex<BlockCache>> {
BLOCK_CACHE_MANAGER
.lock()
.get_block_cache(block_id, block_device)
}
/// Sync all block cache to block device
pub fn block_cache_sync_all() {
let manager = BLOCK_CACHE_MANAGER.lock();
for (_, cache) in manager.queue.iter() {
cache.lock().sync();
}
}

@ -0,0 +1,9 @@
use core::any::Any;
/// Trait for block devices
/// which reads and writes data in the unit of blocks
pub trait BlockDevice: Send + Sync + Any {
///Read data form block to buffer
fn read_block(&self, block_id: usize, buf: &mut [u8]);
///Write data from buffer to block
fn write_block(&self, block_id: usize, buf: &[u8]);
}

@ -0,0 +1,151 @@
use super::{
block_cache_sync_all, get_block_cache, Bitmap, BlockDevice, DiskInode, DiskInodeType, Inode,
SuperBlock,
};
use crate::BLOCK_SZ;
use alloc::sync::Arc;
use spin::Mutex;
///An easy file system on block
pub struct EasyFileSystem {
///Real device
pub block_device: Arc<dyn BlockDevice>,
///Inode bitmap
pub inode_bitmap: Bitmap,
///Data bitmap
pub data_bitmap: Bitmap,
inode_area_start_block: u32,
data_area_start_block: u32,
}
type DataBlock = [u8; BLOCK_SZ];
/// An easy fs over a block device
impl EasyFileSystem {
/// A data block of block size
pub fn create(
block_device: Arc<dyn BlockDevice>,
total_blocks: u32,
inode_bitmap_blocks: u32,
) -> Arc<Mutex<Self>> {
// calculate block size of areas & create bitmaps
let inode_bitmap = Bitmap::new(1, inode_bitmap_blocks as usize);
let inode_num = inode_bitmap.maximum();
let inode_area_blocks =
((inode_num * core::mem::size_of::<DiskInode>() + BLOCK_SZ - 1) / BLOCK_SZ) as u32;
let inode_total_blocks = inode_bitmap_blocks + inode_area_blocks;
let data_total_blocks = total_blocks - 1 - inode_total_blocks;
let data_bitmap_blocks = (data_total_blocks + 4096) / 4097;
let data_area_blocks = data_total_blocks - data_bitmap_blocks;
let data_bitmap = Bitmap::new(
(1 + inode_bitmap_blocks + inode_area_blocks) as usize,
data_bitmap_blocks as usize,
);
let mut efs = Self {
block_device: Arc::clone(&block_device),
inode_bitmap,
data_bitmap,
inode_area_start_block: 1 + inode_bitmap_blocks,
data_area_start_block: 1 + inode_total_blocks + data_bitmap_blocks,
};
// clear all blocks
for i in 0..total_blocks {
get_block_cache(i as usize, Arc::clone(&block_device))
.lock()
.modify(0, |data_block: &mut DataBlock| {
for byte in data_block.iter_mut() {
*byte = 0;
}
});
}
// initialize SuperBlock
get_block_cache(0, Arc::clone(&block_device)).lock().modify(
0,
|super_block: &mut SuperBlock| {
super_block.initialize(
total_blocks,
inode_bitmap_blocks,
inode_area_blocks,
data_bitmap_blocks,
data_area_blocks,
);
},
);
// write back immediately
// create a inode for root node "/"
assert_eq!(efs.alloc_inode(), 0);
let (root_inode_block_id, root_inode_offset) = efs.get_disk_inode_pos(0);
get_block_cache(root_inode_block_id as usize, Arc::clone(&block_device))
.lock()
.modify(root_inode_offset, |disk_inode: &mut DiskInode| {
disk_inode.initialize(DiskInodeType::Directory);
});
block_cache_sync_all();
Arc::new(Mutex::new(efs))
}
/// Open a block device as a filesystem
pub fn open(block_device: Arc<dyn BlockDevice>) -> Arc<Mutex<Self>> {
// read SuperBlock
get_block_cache(0, Arc::clone(&block_device))
.lock()
.read(0, |super_block: &SuperBlock| {
assert!(super_block.is_valid(), "Error loading EFS!");
let inode_total_blocks =
super_block.inode_bitmap_blocks + super_block.inode_area_blocks;
let efs = Self {
block_device,
inode_bitmap: Bitmap::new(1, super_block.inode_bitmap_blocks as usize),
data_bitmap: Bitmap::new(
(1 + inode_total_blocks) as usize,
super_block.data_bitmap_blocks as usize,
),
inode_area_start_block: 1 + super_block.inode_bitmap_blocks,
data_area_start_block: 1 + inode_total_blocks + super_block.data_bitmap_blocks,
};
Arc::new(Mutex::new(efs))
})
}
/// Get the root inode of the filesystem
pub fn root_inode(efs: &Arc<Mutex<Self>>) -> Inode {
let block_device = Arc::clone(&efs.lock().block_device);
// acquire efs lock temporarily
let (block_id, block_offset) = efs.lock().get_disk_inode_pos(0);
// release efs lock
Inode::new(block_id, block_offset, Arc::clone(efs), block_device)
}
/// Get inode by id
pub fn get_disk_inode_pos(&self, inode_id: u32) -> (u32, usize) {
let inode_size = core::mem::size_of::<DiskInode>();
let inodes_per_block = (BLOCK_SZ / inode_size) as u32;
let block_id = self.inode_area_start_block + inode_id / inodes_per_block;
(
block_id,
(inode_id % inodes_per_block) as usize * inode_size,
)
}
/// Get data block by id
pub fn get_data_block_id(&self, data_block_id: u32) -> u32 {
self.data_area_start_block + data_block_id
}
/// Allocate a new inode
pub fn alloc_inode(&mut self) -> u32 {
self.inode_bitmap.alloc(&self.block_device).unwrap() as u32
}
/// Allocate a data block
pub fn alloc_data(&mut self) -> u32 {
self.data_bitmap.alloc(&self.block_device).unwrap() as u32 + self.data_area_start_block
}
/// Deallocate a data block
pub fn dealloc_data(&mut self, block_id: u32) {
get_block_cache(block_id as usize, Arc::clone(&self.block_device))
.lock()
.modify(0, |data_block: &mut DataBlock| {
data_block.iter_mut().for_each(|p| {
*p = 0;
})
});
self.data_bitmap.dealloc(
&self.block_device,
(block_id - self.data_area_start_block) as usize,
)
}
}

@ -0,0 +1,434 @@
use super::{get_block_cache, BlockDevice, BLOCK_SZ};
use alloc::sync::Arc;
use alloc::vec::Vec;
use core::fmt::{Debug, Formatter, Result};
/// Magic number for sanity check
const EFS_MAGIC: u32 = 0x3b800001;
/// The max number of direct inodes
const INODE_DIRECT_COUNT: usize = 28;
/// The max length of inode name
const NAME_LENGTH_LIMIT: usize = 27;
/// The max number of indirect1 inodes
const INODE_INDIRECT1_COUNT: usize = BLOCK_SZ / 4;
/// The max number of indirect2 inodes
const INODE_INDIRECT2_COUNT: usize = INODE_INDIRECT1_COUNT * INODE_INDIRECT1_COUNT;
/// The upper bound of direct inode index
const DIRECT_BOUND: usize = INODE_DIRECT_COUNT;
/// The upper bound of indirect1 inode index
const INDIRECT1_BOUND: usize = DIRECT_BOUND + INODE_INDIRECT1_COUNT;
/// The upper bound of indirect2 inode indexs
#[allow(unused)]
const INDIRECT2_BOUND: usize = INDIRECT1_BOUND + INODE_INDIRECT2_COUNT;
/// Super block of a filesystem
#[repr(C)]
pub struct SuperBlock {
magic: u32,
pub total_blocks: u32,
pub inode_bitmap_blocks: u32,
pub inode_area_blocks: u32,
pub data_bitmap_blocks: u32,
pub data_area_blocks: u32,
}
impl Debug for SuperBlock {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
f.debug_struct("SuperBlock")
.field("total_blocks", &self.total_blocks)
.field("inode_bitmap_blocks", &self.inode_bitmap_blocks)
.field("inode_area_blocks", &self.inode_area_blocks)
.field("data_bitmap_blocks", &self.data_bitmap_blocks)
.field("data_area_blocks", &self.data_area_blocks)
.finish()
}
}
impl SuperBlock {
/// Initialize a super block
pub fn initialize(
&mut self,
total_blocks: u32,
inode_bitmap_blocks: u32,
inode_area_blocks: u32,
data_bitmap_blocks: u32,
data_area_blocks: u32,
) {
*self = Self {
magic: EFS_MAGIC,
total_blocks,
inode_bitmap_blocks,
inode_area_blocks,
data_bitmap_blocks,
data_area_blocks,
}
}
/// Check if a super block is valid using efs magic
pub fn is_valid(&self) -> bool {
self.magic == EFS_MAGIC
}
}
/// Type of a disk inode
#[derive(PartialEq)]
pub enum DiskInodeType {
File,
Directory,
}
/// A indirect block
type IndirectBlock = [u32; BLOCK_SZ / 4];
/// A data block
type DataBlock = [u8; BLOCK_SZ];
/// A disk inode
#[repr(C)]
pub struct DiskInode {
pub size: u32,
pub direct: [u32; INODE_DIRECT_COUNT],
pub indirect1: u32,
pub indirect2: u32,
type_: DiskInodeType,
}
impl DiskInode {
/// Initialize a disk inode, as well as all direct inodes under it
/// indirect1 and indirect2 block are allocated only when they are needed
pub fn initialize(&mut self, type_: DiskInodeType) {
self.size = 0;
self.direct.iter_mut().for_each(|v| *v = 0);
self.indirect1 = 0;
self.indirect2 = 0;
self.type_ = type_;
}
/// Whether this inode is a directory
pub fn is_dir(&self) -> bool {
self.type_ == DiskInodeType::Directory
}
/// Whether this inode is a file
#[allow(unused)]
pub fn is_file(&self) -> bool {
self.type_ == DiskInodeType::File
}
/// Return block number correspond to size.
pub fn data_blocks(&self) -> u32 {
Self::_data_blocks(self.size)
}
fn _data_blocks(size: u32) -> u32 {
(size + BLOCK_SZ as u32 - 1) / BLOCK_SZ as u32
}
/// Return number of blocks needed include indirect1/2.
pub fn total_blocks(size: u32) -> u32 {
let data_blocks = Self::_data_blocks(size) as usize;
let mut total = data_blocks as usize;
// indirect1
if data_blocks > INODE_DIRECT_COUNT {
total += 1;
}
// indirect2
if data_blocks > INDIRECT1_BOUND {
total += 1;
// sub indirect1
total +=
(data_blocks - INDIRECT1_BOUND + INODE_INDIRECT1_COUNT - 1) / INODE_INDIRECT1_COUNT;
}
total as u32
}
/// Get the number of data blocks that have to be allocated given the new size of data
pub fn blocks_num_needed(&self, new_size: u32) -> u32 {
assert!(new_size >= self.size);
Self::total_blocks(new_size) - Self::total_blocks(self.size)
}
/// Get id of block given inner id
pub fn get_block_id(&self, inner_id: u32, block_device: &Arc<dyn BlockDevice>) -> u32 {
let inner_id = inner_id as usize;
if inner_id < INODE_DIRECT_COUNT {
self.direct[inner_id]
} else if inner_id < INDIRECT1_BOUND {
get_block_cache(self.indirect1 as usize, Arc::clone(block_device))
.lock()
.read(0, |indirect_block: &IndirectBlock| {
indirect_block[inner_id - INODE_DIRECT_COUNT]
})
} else {
let last = inner_id - INDIRECT1_BOUND;
let indirect1 = get_block_cache(self.indirect2 as usize, Arc::clone(block_device))
.lock()
.read(0, |indirect2: &IndirectBlock| {
indirect2[last / INODE_INDIRECT1_COUNT]
});
get_block_cache(indirect1 as usize, Arc::clone(block_device))
.lock()
.read(0, |indirect1: &IndirectBlock| {
indirect1[last % INODE_INDIRECT1_COUNT]
})
}
}
/// Inncrease the size of current disk inode
pub fn increase_size(
&mut self,
new_size: u32,
new_blocks: Vec<u32>,
block_device: &Arc<dyn BlockDevice>,
) {
let mut current_blocks = self.data_blocks();
self.size = new_size;
let mut total_blocks = self.data_blocks();
let mut new_blocks = new_blocks.into_iter();
// fill direct
while current_blocks < total_blocks.min(INODE_DIRECT_COUNT as u32) {
self.direct[current_blocks as usize] = new_blocks.next().unwrap();
current_blocks += 1;
}
// alloc indirect1
if total_blocks > INODE_DIRECT_COUNT as u32 {
if current_blocks == INODE_DIRECT_COUNT as u32 {
self.indirect1 = new_blocks.next().unwrap();
}
current_blocks -= INODE_DIRECT_COUNT as u32;
total_blocks -= INODE_DIRECT_COUNT as u32;
} else {
return;
}
// fill indirect1
get_block_cache(self.indirect1 as usize, Arc::clone(block_device))
.lock()
.modify(0, |indirect1: &mut IndirectBlock| {
while current_blocks < total_blocks.min(INODE_INDIRECT1_COUNT as u32) {
indirect1[current_blocks as usize] = new_blocks.next().unwrap();
current_blocks += 1;
}
});
// alloc indirect2
if total_blocks > INODE_INDIRECT1_COUNT as u32 {
if current_blocks == INODE_INDIRECT1_COUNT as u32 {
self.indirect2 = new_blocks.next().unwrap();
}
current_blocks -= INODE_INDIRECT1_COUNT as u32;
total_blocks -= INODE_INDIRECT1_COUNT as u32;
} else {
return;
}
// fill indirect2 from (a0, b0) -> (a1, b1)
let mut a0 = current_blocks as usize / INODE_INDIRECT1_COUNT;
let mut b0 = current_blocks as usize % INODE_INDIRECT1_COUNT;
let a1 = total_blocks as usize / INODE_INDIRECT1_COUNT;
let b1 = total_blocks as usize % INODE_INDIRECT1_COUNT;
// alloc low-level indirect1
get_block_cache(self.indirect2 as usize, Arc::clone(block_device))
.lock()
.modify(0, |indirect2: &mut IndirectBlock| {
while (a0 < a1) || (a0 == a1 && b0 < b1) {
if b0 == 0 {
indirect2[a0] = new_blocks.next().unwrap();
}
// fill current
get_block_cache(indirect2[a0] as usize, Arc::clone(block_device))
.lock()
.modify(0, |indirect1: &mut IndirectBlock| {
indirect1[b0] = new_blocks.next().unwrap();
});
// move to next
b0 += 1;
if b0 == INODE_INDIRECT1_COUNT {
b0 = 0;
a0 += 1;
}
}
});
}
/// Clear size to zero and return blocks that should be deallocated.
/// We will clear the block contents to zero later.
pub fn clear_size(&mut self, block_device: &Arc<dyn BlockDevice>) -> Vec<u32> {
let mut v: Vec<u32> = Vec::new();
let mut data_blocks = self.data_blocks() as usize;
self.size = 0;
let mut current_blocks = 0usize;
// direct
while current_blocks < data_blocks.min(INODE_DIRECT_COUNT) {
v.push(self.direct[current_blocks]);
self.direct[current_blocks] = 0;
current_blocks += 1;
}
// indirect1 block
if data_blocks > INODE_DIRECT_COUNT {
v.push(self.indirect1);
data_blocks -= INODE_DIRECT_COUNT;
current_blocks = 0;
} else {
return v;
}
// indirect1
get_block_cache(self.indirect1 as usize, Arc::clone(block_device))
.lock()
.modify(0, |indirect1: &mut IndirectBlock| {
while current_blocks < data_blocks.min(INODE_INDIRECT1_COUNT) {
v.push(indirect1[current_blocks]);
//indirect1[current_blocks] = 0;
current_blocks += 1;
}
});
self.indirect1 = 0;
// indirect2 block
if data_blocks > INODE_INDIRECT1_COUNT {
v.push(self.indirect2);
data_blocks -= INODE_INDIRECT1_COUNT;
} else {
return v;
}
// indirect2
assert!(data_blocks <= INODE_INDIRECT2_COUNT);
let a1 = data_blocks / INODE_INDIRECT1_COUNT;
let b1 = data_blocks % INODE_INDIRECT1_COUNT;
get_block_cache(self.indirect2 as usize, Arc::clone(block_device))
.lock()
.modify(0, |indirect2: &mut IndirectBlock| {
// full indirect1 blocks
for entry in indirect2.iter_mut().take(a1) {
v.push(*entry);
get_block_cache(*entry as usize, Arc::clone(block_device))
.lock()
.modify(0, |indirect1: &mut IndirectBlock| {
for entry in indirect1.iter() {
v.push(*entry);
}
});
}
// last indirect1 block
if b1 > 0 {
v.push(indirect2[a1]);
get_block_cache(indirect2[a1] as usize, Arc::clone(block_device))
.lock()
.modify(0, |indirect1: &mut IndirectBlock| {
for entry in indirect1.iter().take(b1) {
v.push(*entry);
}
});
//indirect2[a1] = 0;
}
});
self.indirect2 = 0;
v
}
/// Read data from current disk inode
pub fn read_at(
&self,
offset: usize,
buf: &mut [u8],
block_device: &Arc<dyn BlockDevice>,
) -> usize {
let mut start = offset;
let end = (offset + buf.len()).min(self.size as usize);
if start >= end {
return 0;
}
let mut start_block = start / BLOCK_SZ;
let mut read_size = 0usize;
loop {
// calculate end of current block
let mut end_current_block = (start / BLOCK_SZ + 1) * BLOCK_SZ;
end_current_block = end_current_block.min(end);
// read and update read size
let block_read_size = end_current_block - start;
let dst = &mut buf[read_size..read_size + block_read_size];
get_block_cache(
self.get_block_id(start_block as u32, block_device) as usize,
Arc::clone(block_device),
)
.lock()
.read(0, |data_block: &DataBlock| {
let src = &data_block[start % BLOCK_SZ..start % BLOCK_SZ + block_read_size];
dst.copy_from_slice(src);
});
read_size += block_read_size;
// move to next block
if end_current_block == end {
break;
}
start_block += 1;
start = end_current_block;
}
read_size
}
/// Write data into current disk inode
/// size must be adjusted properly beforehand
pub fn write_at(
&mut self,
offset: usize,
buf: &[u8],
block_device: &Arc<dyn BlockDevice>,
) -> usize {
let mut start = offset;
let end = (offset + buf.len()).min(self.size as usize);
assert!(start <= end);
let mut start_block = start / BLOCK_SZ;
let mut write_size = 0usize;
loop {
// calculate end of current block
let mut end_current_block = (start / BLOCK_SZ + 1) * BLOCK_SZ;
end_current_block = end_current_block.min(end);
// write and update write size
let block_write_size = end_current_block - start;
get_block_cache(
self.get_block_id(start_block as u32, block_device) as usize,
Arc::clone(block_device),
)
.lock()
.modify(0, |data_block: &mut DataBlock| {
let src = &buf[write_size..write_size + block_write_size];
let dst = &mut data_block[start % BLOCK_SZ..start % BLOCK_SZ + block_write_size];
dst.copy_from_slice(src);
});
write_size += block_write_size;
// move to next block
if end_current_block == end {
break;
}
start_block += 1;
start = end_current_block;
}
write_size
}
}
/// A directory entry
#[repr(C)]
pub struct DirEntry {
name: [u8; NAME_LENGTH_LIMIT + 1],
inode_number: u32,
}
/// Size of a directory entry
pub const DIRENT_SZ: usize = 32;
impl DirEntry {
/// Create an empty directory entry
pub fn empty() -> Self {
Self {
name: [0u8; NAME_LENGTH_LIMIT + 1],
inode_number: 0,
}
}
/// Crate a directory entry from name and inode number
pub fn new(name: &str, inode_number: u32) -> Self {
let mut bytes = [0u8; NAME_LENGTH_LIMIT + 1];
bytes[..name.len()].copy_from_slice(name.as_bytes());
Self {
name: bytes,
inode_number,
}
}
/// Serialize into bytes
pub fn as_bytes(&self) -> &[u8] {
unsafe { core::slice::from_raw_parts(self as *const _ as usize as *const u8, DIRENT_SZ) }
}
/// Serialize into mutable bytes
pub fn as_bytes_mut(&mut self) -> &mut [u8] {
unsafe { core::slice::from_raw_parts_mut(self as *mut _ as usize as *mut u8, DIRENT_SZ) }
}
/// Get name of the entry
pub fn name(&self) -> &str {
let len = (0usize..).find(|i| self.name[*i] == 0).unwrap();
core::str::from_utf8(&self.name[..len]).unwrap()
}
/// Get inode number of the entry
pub fn inode_number(&self) -> u32 {
self.inode_number
}
}

@ -0,0 +1,18 @@
//!An easy file system isolated from the kernel
#![no_std]
#![deny(missing_docs)]
extern crate alloc;
mod bitmap;
mod block_cache;
mod block_dev;
mod efs;
mod layout;
mod vfs;
/// Use a block size of 512 bytes
pub const BLOCK_SZ: usize = 512;
use bitmap::Bitmap;
use block_cache::{block_cache_sync_all, get_block_cache};
pub use block_dev::BlockDevice;
pub use efs::EasyFileSystem;
use layout::*;
pub use vfs::Inode;

@ -0,0 +1,186 @@
use super::{
block_cache_sync_all, get_block_cache, BlockDevice, DirEntry, DiskInode, DiskInodeType,
EasyFileSystem, DIRENT_SZ,
};
use alloc::string::String;
use alloc::sync::Arc;
use alloc::vec::Vec;
use spin::{Mutex, MutexGuard};
/// Virtual filesystem layer over easy-fs
pub struct Inode {
block_id: usize,
block_offset: usize,
fs: Arc<Mutex<EasyFileSystem>>,
block_device: Arc<dyn BlockDevice>,
}
impl Inode {
/// Create a vfs inode
pub fn new(
block_id: u32,
block_offset: usize,
fs: Arc<Mutex<EasyFileSystem>>,
block_device: Arc<dyn BlockDevice>,
) -> Self {
Self {
block_id: block_id as usize,
block_offset,
fs,
block_device,
}
}
/// Call a function over a disk inode to read it
fn read_disk_inode<V>(&self, f: impl FnOnce(&DiskInode) -> V) -> V {
get_block_cache(self.block_id, Arc::clone(&self.block_device))
.lock()
.read(self.block_offset, f)
}
/// Call a function over a disk inode to modify it
fn modify_disk_inode<V>(&self, f: impl FnOnce(&mut DiskInode) -> V) -> V {
get_block_cache(self.block_id, Arc::clone(&self.block_device))
.lock()
.modify(self.block_offset, f)
}
/// Find inode under a disk inode by name
fn find_inode_id(&self, name: &str, disk_inode: &DiskInode) -> Option<u32> {
// assert it is a directory
assert!(disk_inode.is_dir());
let file_count = (disk_inode.size as usize) / DIRENT_SZ;
let mut dirent = DirEntry::empty();
for i in 0..file_count {
assert_eq!(
disk_inode.read_at(DIRENT_SZ * i, dirent.as_bytes_mut(), &self.block_device,),
DIRENT_SZ,
);
if dirent.name() == name {
return Some(dirent.inode_number() as u32);
}
}
None
}
/// Find inode under current inode by name
pub fn find(&self, name: &str) -> Option<Arc<Inode>> {
let fs = self.fs.lock();
self.read_disk_inode(|disk_inode| {
self.find_inode_id(name, disk_inode).map(|inode_id| {
let (block_id, block_offset) = fs.get_disk_inode_pos(inode_id);
Arc::new(Self::new(
block_id,
block_offset,
self.fs.clone(),
self.block_device.clone(),
))
})
})
}
/// Increase the size of a disk inode
fn increase_size(
&self,
new_size: u32,
disk_inode: &mut DiskInode,
fs: &mut MutexGuard<EasyFileSystem>,
) {
if new_size < disk_inode.size {
return;
}
let blocks_needed = disk_inode.blocks_num_needed(new_size);
let mut v: Vec<u32> = Vec::new();
for _ in 0..blocks_needed {
v.push(fs.alloc_data());
}
disk_inode.increase_size(new_size, v, &self.block_device);
}
/// Create inode under current inode by name
pub fn create(&self, name: &str) -> Option<Arc<Inode>> {
let mut fs = self.fs.lock();
let op = |root_inode: &DiskInode| {
// assert it is a directory
assert!(root_inode.is_dir());
// has the file been created?
self.find_inode_id(name, root_inode)
};
if self.read_disk_inode(op).is_some() {
return None;
}
// create a new file
// alloc a inode with an indirect block
let new_inode_id = fs.alloc_inode();
// initialize inode
let (new_inode_block_id, new_inode_block_offset) = fs.get_disk_inode_pos(new_inode_id);
get_block_cache(new_inode_block_id as usize, Arc::clone(&self.block_device))
.lock()
.modify(new_inode_block_offset, |new_inode: &mut DiskInode| {
new_inode.initialize(DiskInodeType::File);
});
self.modify_disk_inode(|root_inode| {
// append file in the dirent
let file_count = (root_inode.size as usize) / DIRENT_SZ;
let new_size = (file_count + 1) * DIRENT_SZ;
// increase size
self.increase_size(new_size as u32, root_inode, &mut fs);
// write dirent
let dirent = DirEntry::new(name, new_inode_id);
root_inode.write_at(
file_count * DIRENT_SZ,
dirent.as_bytes(),
&self.block_device,
);
});
let (block_id, block_offset) = fs.get_disk_inode_pos(new_inode_id);
block_cache_sync_all();
// return inode
Some(Arc::new(Self::new(
block_id,
block_offset,
self.fs.clone(),
self.block_device.clone(),
)))
// release efs lock automatically by compiler
}
/// List inodes under current inode
pub fn ls(&self) -> Vec<String> {
let _fs = self.fs.lock();
self.read_disk_inode(|disk_inode| {
let file_count = (disk_inode.size as usize) / DIRENT_SZ;
let mut v: Vec<String> = Vec::new();
for i in 0..file_count {
let mut dirent = DirEntry::empty();
assert_eq!(
disk_inode.read_at(i * DIRENT_SZ, dirent.as_bytes_mut(), &self.block_device,),
DIRENT_SZ,
);
v.push(String::from(dirent.name()));
}
v
})
}
/// Read data from current inode
pub fn read_at(&self, offset: usize, buf: &mut [u8]) -> usize {
let _fs = self.fs.lock();
self.read_disk_inode(|disk_inode| disk_inode.read_at(offset, buf, &self.block_device))
}
/// Write data to current inode
pub fn write_at(&self, offset: usize, buf: &[u8]) -> usize {
let mut fs = self.fs.lock();
let size = self.modify_disk_inode(|disk_inode| {
self.increase_size((offset + buf.len()) as u32, disk_inode, &mut fs);
disk_inode.write_at(offset, buf, &self.block_device)
});
block_cache_sync_all();
size
}
/// Clear the data in current inode
pub fn clear(&self) {
let mut fs = self.fs.lock();
self.modify_disk_inode(|disk_inode| {
let size = disk_inode.size;
let data_blocks_dealloc = disk_inode.clear_size(&self.block_device);
assert!(data_blocks_dealloc.len() == DiskInode::total_blocks(size) as usize);
for data_block in data_blocks_dealloc.into_iter() {
fs.dealloc_data(data_block);
}
});
block_cache_sync_all();
}
}

@ -10,10 +10,17 @@ edition = "2018"
riscv = { git = "https://github.com/rcore-os/riscv", features = ["inline-asm"] }
lazy_static = { version = "1.4.0", features = ["spin_no_std"] }
buddy_system_allocator = "0.6"
spin = "0.7.0"
bitflags = "1.2.1"
xmas-elf = "0.7.0"
virtio-drivers = { git = "https://github.com/rcore-os/virtio-drivers" }
k210-pac = { git = "https://github.com/wyfcyx/k210-pac" }
k210-hal = { git = "https://github.com/wyfcyx/k210-hal" }
k210-soc = { git = "https://github.com/wyfcyx/k210-soc" }
easy-fs = { path = "../easy-fs" }
[features]
board_qemu = []
board_k210 = []
board_k210 = []
[profile.release]
debug = true

@ -3,17 +3,32 @@ TARGET := riscv64gc-unknown-none-elf
MODE := release
KERNEL_ELF := target/$(TARGET)/$(MODE)/os
KERNEL_BIN := $(KERNEL_ELF).bin
KERNEL_ENTRY_PA := 0x80020000
DISASM_TMP := target/$(TARGET)/$(MODE)/asm
FS_IMG := ../user/target/$(TARGET)/$(MODE)/fs.img
SDCARD := /dev/sdb
APPS := ../user/src/bin/*
# BOARD
BOARD ?= qemu
SBI ?= rustsbi
BOOTLOADER := ../bootloader/$(SBI)-$(BOARD).bin
BOARD ?= qemu
SBI ?= rustsbi
BOOTLOADER := ../bootloader/$(SBI)-$(BOARD).bin
K210_BOOTLOADER_SIZE := 131072
# Building mode argument
ifeq ($(MODE), release)
MODE_ARG := --release
endif
# KERNEL ENTRY
ifeq ($(BOARD), qemu)
KERNEL_ENTRY_PA := 0x80200000
else ifeq ($(BOARD), k210)
KERNEL_ENTRY_PA := 0x80020000
endif
# Run K210
K210-SERIALPORT = /dev/ttyUSB0
K210-BURNER = ../tools/kflash.py
K210-BURNER = ../tools/kflash.py
# Binutils
OBJDUMP := rust-objdump --arch-name=riscv64
@ -22,14 +37,41 @@ OBJCOPY := rust-objcopy --binary-architecture=riscv64
# Disassembly
DISASM ?= -x
build: $(KERNEL_BIN)
build: env switch-check $(KERNEL_BIN) fs-img
switch-check:
ifeq ($(BOARD), qemu)
(which last-qemu) || (rm -f last-k210 && touch last-qemu && make clean)
else ifeq ($(BOARD), k210)
(which last-k210) || (rm -f last-qemu && touch last-k210 && make clean)
endif
env:
(rustup target list | grep "riscv64gc-unknown-none-elf (installed)") || rustup target add $(TARGET)
cargo install cargo-binutils --vers =0.3.3
rustup component add rust-src
rustup component add llvm-tools-preview
sdcard: fs-img
@echo "Are you sure write to $(SDCARD) ? [y/N] " && read ans && [ $${ans:-N} = y ]
@sudo dd if=/dev/zero of=$(SDCARD) bs=1048576 count=32
@sudo dd if=$(FS_IMG) of=$(SDCARD)
$(KERNEL_BIN): kernel
@$(OBJCOPY) $(KERNEL_ELF) --strip-all -O binary $@
kernel:
fs-img: $(APPS)
@cd ../user && make build
@rm -f $(FS_IMG)
@cd ../easy-fs-fuse && cargo run --release -- -s ../user/src/bin/ -t ../user/target/riscv64gc-unknown-none-elf/release/
$(APPS):
kernel:
@echo Platform: $(BOARD)
@cp src/linker-$(BOARD).ld src/linker.ld
@cargo build --release --features "board_$(BOARD)"
@rm src/linker.ld
clean:
@cargo clean
@ -50,14 +92,17 @@ ifeq ($(BOARD),qemu)
-machine virt \
-nographic \
-bios $(BOOTLOADER) \
-device loader,file=$(KERNEL_BIN),addr=$(KERNEL_ENTRY_PA)
-device loader,file=$(KERNEL_BIN),addr=$(KERNEL_ENTRY_PA) \
-drive file=$(FS_IMG),if=none,format=raw,id=x0 \
-device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0
else
(which $(K210-BURNER)) || (cd .. && git clone https://github.com/sipeed/kflash.py.git && mv kflash.py tools)
@cp $(BOOTLOADER) $(BOOTLOADER).copy
@dd if=$(KERNEL_BIN) of=$(BOOTLOADER).copy bs=128K seek=1
@dd if=$(KERNEL_BIN) of=$(BOOTLOADER).copy bs=$(K210_BOOTLOADER_SIZE) seek=1
@mv $(BOOTLOADER).copy $(KERNEL_BIN)
@sudo chmod 777 $(K210-SERIALPORT)
python3 $(K210-BURNER) -p $(K210-SERIALPORT) -b 1500000 $(KERNEL_BIN)
miniterm --eol LF --dtr 0 --rts 0 --filter direct $(K210-SERIALPORT) 115200
python3 -m serial.tools.miniterm --eol LF --dtr 0 --rts 0 --filter direct $(K210-SERIALPORT) 115200
endif
debug: build
@ -66,4 +111,11 @@ debug: build
tmux split-window -h "riscv64-unknown-elf-gdb -ex 'file $(KERNEL_ELF)' -ex 'set arch riscv:rv64' -ex 'target remote localhost:1234'" && \
tmux -2 attach-session -d
.PHONY: build kernel clean disasm disasm-vim run-inner
gdbserver: build
@qemu-system-riscv64 -machine virt -nographic -bios $(BOOTLOADER) -device loader,file=$(KERNEL_BIN),addr=$(KERNEL_ENTRY_PA) -s -S
gdbclient:
@riscv64-unknown-elf-gdb -ex 'file $(KERNEL_ELF)' -ex 'set arch riscv:rv64' -ex 'target remote localhost:1234'
.PHONY: build env kernel clean disasm disasm-vim run-inner switch-check fs-img gdbserver gdbclient

@ -1,56 +1,6 @@
use std::io::{Result, Write};
use std::fs::{File, read_dir};
static TARGET_PATH: &str = "../user/target/riscv64gc-unknown-none-elf/release/";
fn main() {
println!("cargo:rerun-if-changed=../user/src/");
println!("cargo:rerun-if-changed={}", TARGET_PATH);
insert_app_data().unwrap();
}
static TARGET_PATH: &str = "../user/target/riscv64gc-unknown-none-elf/release/";
fn insert_app_data() -> Result<()> {
let mut f = File::create("src/link_app.S").unwrap();
let mut apps: Vec<_> = read_dir("../user/src/bin")
.unwrap()
.into_iter()
.map(|dir_entry| {
let mut name_with_ext = dir_entry.unwrap().file_name().into_string().unwrap();
name_with_ext.drain(name_with_ext.find('.').unwrap()..name_with_ext.len());
name_with_ext
})
.collect();
apps.sort();
writeln!(f, r#"
.align 4
.section .data
.global _num_app
_num_app:
.quad {}"#, apps.len())?;
for i in 0..apps.len() {
writeln!(f, r#" .quad app_{}_start"#, i)?;
}
writeln!(f, r#" .quad app_{}_end"#, apps.len() - 1)?;
writeln!(f, r#"
.global _app_names
_app_names:"#)?;
for app in apps.iter() {
writeln!(f, r#" .string "{}\n""#, app)?;
}
for (idx, app) in apps.iter().enumerate() {
println!("app_{}: {}", idx, app);
writeln!(f, r#"
.section .data
.global app_{0}_start
.global app_{0}_end
.align 12
app_{0}_start:
.incbin "{2}{1}"
app_{0}_end:"#, idx, app, TARGET_PATH)?;
}
Ok(())
}

@ -0,0 +1,22 @@
pub const CLOCK_FREQ: usize = 403000000 / 62;
pub const MMIO: &[(usize, usize)] = &[
// we don't need clint in S priv when running
// we only need claim/complete for target0 after initializing
(0x0C00_0000, 0x3000), /* PLIC */
(0x0C20_0000, 0x1000), /* PLIC */
(0x3800_0000, 0x1000), /* UARTHS */
(0x3800_1000, 0x1000), /* GPIOHS */
(0x5020_0000, 0x1000), /* GPIO */
(0x5024_0000, 0x1000), /* SPI_SLAVE */
(0x502B_0000, 0x1000), /* FPIOA */
(0x502D_0000, 0x1000), /* TIMER0 */
(0x502E_0000, 0x1000), /* TIMER1 */
(0x502F_0000, 0x1000), /* TIMER2 */
(0x5044_0000, 0x1000), /* SYSCTL */
(0x5200_0000, 0x1000), /* SPI0 */
(0x5300_0000, 0x1000), /* SPI1 */
(0x5400_0000, 0x1000), /* SPI2 */
];
pub type BlockDeviceImpl = crate::drivers::block::SDCardWrapper;

@ -0,0 +1,5 @@
pub const CLOCK_FREQ: usize = 12500000;
pub const MMIO: &[(usize, usize)] = &[(0x10001000, 0x1000)];
pub type BlockDeviceImpl = crate::drivers::block::VirtIOBlock;

@ -1,15 +1,14 @@
//! Constants used in rCore
#[allow(unused)]
pub const USER_STACK_SIZE: usize = 4096 * 2;
pub const KERNEL_STACK_SIZE: usize = 4096 * 2;
pub const KERNEL_HEAP_SIZE: usize = 0x20_0000;
pub const MEMORY_END: usize = 0x80600000;
pub const MEMORY_END: usize = 0x80800000;
pub const PAGE_SIZE: usize = 0x1000;
pub const PAGE_SIZE_BITS: usize = 0xc;
pub const TRAMPOLINE: usize = usize::MAX - PAGE_SIZE + 1;
pub const TRAP_CONTEXT: usize = TRAMPOLINE - PAGE_SIZE;
#[cfg(feature = "board_k210")]
pub const CPU_FREQ: usize = 10000000;
#[cfg(feature = "board_qemu")]
pub const CPU_FREQ: usize = 12500000;
pub use crate::board::{CLOCK_FREQ, MMIO};

@ -1,5 +1,6 @@
use core::fmt::{self, Write};
//! SBI console driver, for text output
use crate::sbi::console_putchar;
use core::fmt::{self, Write};
struct Stdout;
@ -17,6 +18,7 @@ pub fn print(args: fmt::Arguments) {
}
#[macro_export]
/// print string macro
macro_rules! print {
($fmt: literal $(, $($arg: tt)+)?) => {
$crate::console::print(format_args!($fmt $(, $($arg)+)?));
@ -24,10 +26,9 @@ macro_rules! print {
}
#[macro_export]
/// println string macro
macro_rules! println {
($fmt: literal $(, $($arg: tt)+)?) => {
$crate::console::print(format_args!(concat!($fmt, "\n") $(, $($arg)+)?));
}
}

@ -0,0 +1,30 @@
mod sdcard;
mod virtio_blk;
pub use sdcard::SDCardWrapper;
pub use virtio_blk::VirtIOBlock;
use crate::board::BlockDeviceImpl;
use alloc::sync::Arc;
use easy_fs::BlockDevice;
use lazy_static::*;
lazy_static! {
pub static ref BLOCK_DEVICE: Arc<dyn BlockDevice> = Arc::new(BlockDeviceImpl::new());
}
#[allow(unused)]
pub fn block_device_test() {
let block_device = BLOCK_DEVICE.clone();
let mut write_buffer = [0u8; 512];
let mut read_buffer = [0u8; 512];
for i in 0..512 {
for byte in write_buffer.iter_mut() {
*byte = i as u8;
}
block_device.write_block(i as usize, &write_buffer);
block_device.read_block(i as usize, &mut read_buffer);
assert_eq!(write_buffer, read_buffer);
}
println!("block device test passed!");
}

@ -0,0 +1,764 @@
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused)]
use super::BlockDevice;
use crate::sync::UPSafeCell;
use core::convert::TryInto;
use k210_hal::prelude::*;
use k210_pac::{Peripherals, SPI0};
use k210_soc::{
fpioa::{self, io},
//dmac::{dma_channel, DMAC, DMACExt},
gpio,
gpiohs,
sleep::usleep,
spi::{aitm, frame_format, tmod, work_mode, SPIExt, SPIImpl, SPI},
sysctl,
};
use lazy_static::*;
pub struct SDCard<SPI> {
spi: SPI,
spi_cs: u32,
cs_gpionum: u8,
//dmac: &'a DMAC,
//channel: dma_channel,
}
/*
* Start Data tokens:
* Tokens (necessary because at nop/idle (and CS active) only 0xff is
* on the data/command line)
*/
/** Data token start byte, Start Single Block Read */
pub const SD_START_DATA_SINGLE_BLOCK_READ: u8 = 0xFE;
/** Data token start byte, Start Multiple Block Read */
pub const SD_START_DATA_MULTIPLE_BLOCK_READ: u8 = 0xFE;
/** Data token start byte, Start Single Block Write */
pub const SD_START_DATA_SINGLE_BLOCK_WRITE: u8 = 0xFE;
/** Data token start byte, Start Multiple Block Write */
pub const SD_START_DATA_MULTIPLE_BLOCK_WRITE: u8 = 0xFC;
pub const SEC_LEN: usize = 512;
/** SD commands */
#[repr(u8)]
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[allow(unused)]
pub enum CMD {
/** Software reset */
CMD0 = 0,
/** Check voltage range (SDC V2) */
CMD8 = 8,
/** Read CSD register */
CMD9 = 9,
/** Read CID register */
CMD10 = 10,
/** Stop to read data */
CMD12 = 12,
/** Change R/W block size */
CMD16 = 16,
/** Read block */
CMD17 = 17,
/** Read multiple blocks */
CMD18 = 18,
/** Number of blocks to erase (SDC) */
ACMD23 = 23,
/** Write a block */
CMD24 = 24,
/** Write multiple blocks */
CMD25 = 25,
/** Initiate initialization process (SDC) */
ACMD41 = 41,
/** Leading command for ACMD* */
CMD55 = 55,
/** Read OCR */
CMD58 = 58,
/** Enable/disable CRC check */
CMD59 = 59,
}
#[allow(unused)]
#[derive(Debug, Copy, Clone)]
pub enum InitError {
CMDFailed(CMD, u8),
CardCapacityStatusNotSet([u8; 4]),
CannotGetCardInfo,
}
/**
* Card Specific Data: CSD Register
*/
#[derive(Debug, Copy, Clone)]
pub struct SDCardCSD {
pub CSDStruct: u8, /* CSD structure */
pub SysSpecVersion: u8, /* System specification version */
pub Reserved1: u8, /* Reserved */
pub TAAC: u8, /* Data read access-time 1 */
pub NSAC: u8, /* Data read access-time 2 in CLK cycles */
pub MaxBusClkFrec: u8, /* Max. bus clock frequency */
pub CardComdClasses: u16, /* Card command classes */
pub RdBlockLen: u8, /* Max. read data block length */
pub PartBlockRead: u8, /* Partial blocks for read allowed */
pub WrBlockMisalign: u8, /* Write block misalignment */
pub RdBlockMisalign: u8, /* Read block misalignment */
pub DSRImpl: u8, /* DSR implemented */
pub Reserved2: u8, /* Reserved */
pub DeviceSize: u32, /* Device Size */
//MaxRdCurrentVDDMin: u8, /* Max. read current @ VDD min */
//MaxRdCurrentVDDMax: u8, /* Max. read current @ VDD max */
//MaxWrCurrentVDDMin: u8, /* Max. write current @ VDD min */
//MaxWrCurrentVDDMax: u8, /* Max. write current @ VDD max */
//DeviceSizeMul: u8, /* Device size multiplier */
pub EraseGrSize: u8, /* Erase group size */
pub EraseGrMul: u8, /* Erase group size multiplier */
pub WrProtectGrSize: u8, /* Write protect group size */
pub WrProtectGrEnable: u8, /* Write protect group enable */
pub ManDeflECC: u8, /* Manufacturer default ECC */
pub WrSpeedFact: u8, /* Write speed factor */
pub MaxWrBlockLen: u8, /* Max. write data block length */
pub WriteBlockPaPartial: u8, /* Partial blocks for write allowed */
pub Reserved3: u8, /* Reserded */
pub ContentProtectAppli: u8, /* Content protection application */
pub FileFormatGroup: u8, /* File format group */
pub CopyFlag: u8, /* Copy flag (OTP) */
pub PermWrProtect: u8, /* Permanent write protection */
pub TempWrProtect: u8, /* Temporary write protection */
pub FileFormat: u8, /* File Format */
pub ECC: u8, /* ECC code */
pub CSD_CRC: u8, /* CSD CRC */
pub Reserved4: u8, /* always 1*/
}
/**
* Card Identification Data: CID Register
*/
#[derive(Debug, Copy, Clone)]
pub struct SDCardCID {
pub ManufacturerID: u8, /* ManufacturerID */
pub OEM_AppliID: u16, /* OEM/Application ID */
pub ProdName1: u32, /* Product Name part1 */
pub ProdName2: u8, /* Product Name part2*/
pub ProdRev: u8, /* Product Revision */
pub ProdSN: u32, /* Product Serial Number */
pub Reserved1: u8, /* Reserved1 */
pub ManufactDate: u16, /* Manufacturing Date */
pub CID_CRC: u8, /* CID CRC */
pub Reserved2: u8, /* always 1 */
}
/**
* Card information
*/
#[derive(Debug, Copy, Clone)]
pub struct SDCardInfo {
pub SD_csd: SDCardCSD,
pub SD_cid: SDCardCID,
pub CardCapacity: u64, /* Card Capacity */
pub CardBlockSize: u64, /* Card Block Size */
}
impl</*'a,*/ X: SPI> SDCard</*'a,*/ X> {
pub fn new(
spi: X,
spi_cs: u32,
cs_gpionum: u8, /*, dmac: &'a DMAC, channel: dma_channel*/
) -> Self {
Self {
spi,
spi_cs,
cs_gpionum,
/*
dmac,
channel,
*/
}
}
fn CS_HIGH(&self) {
gpiohs::set_pin(self.cs_gpionum, true);
}
fn CS_LOW(&self) {
gpiohs::set_pin(self.cs_gpionum, false);
}
fn HIGH_SPEED_ENABLE(&self) {
self.spi.set_clk_rate(10000000);
}
fn lowlevel_init(&self) {
gpiohs::set_direction(self.cs_gpionum, gpio::direction::OUTPUT);
self.spi.set_clk_rate(200000);
}
fn write_data(&self, data: &[u8]) {
self.spi.configure(
work_mode::MODE0,
frame_format::STANDARD,
8, /* data bits */
0, /* endian */
0, /*instruction length*/
0, /*address length*/
0, /*wait cycles*/
aitm::STANDARD,
tmod::TRANS,
);
self.spi.send_data(self.spi_cs, data);
}
/*
fn write_data_dma(&self, data: &[u32]) {
self.spi.configure(
work_mode::MODE0,
frame_format::STANDARD,
8, /* data bits */
0, /* endian */
0, /*instruction length*/
0, /*address length*/
0, /*wait cycles*/
aitm::STANDARD,
tmod::TRANS,
);
self.spi
.send_data_dma(self.dmac, self.channel, self.spi_cs, data);
}
*/
fn read_data(&self, data: &mut [u8]) {
self.spi.configure(
work_mode::MODE0,
frame_format::STANDARD,
8, /* data bits */
0, /* endian */
0, /*instruction length*/
0, /*address length*/
0, /*wait cycles*/
aitm::STANDARD,
tmod::RECV,
);
self.spi.recv_data(self.spi_cs, data);
}
/*
fn read_data_dma(&self, data: &mut [u32]) {
self.spi.configure(
work_mode::MODE0,
frame_format::STANDARD,
8, /* data bits */
0, /* endian */
0, /*instruction length*/
0, /*address length*/
0, /*wait cycles*/
aitm::STANDARD,
tmod::RECV,
);
self.spi
.recv_data_dma(self.dmac, self.channel, self.spi_cs, data);
}
*/
/*
* Send 5 bytes command to the SD card.
* @param cmd: The user expected command to send to SD card.
* @param arg: The command argument.
* @param crc: The CRC.
* @retval None
*/
fn send_cmd(&self, cmd: CMD, arg: u32, crc: u8) {
/* SD chip select low */
self.CS_LOW();
/* Send the Cmd bytes */
self.write_data(&[
/* Construct byte 1 */
((cmd as u8) | 0x40),
/* Construct byte 2 */
(arg >> 24) as u8,
/* Construct byte 3 */
((arg >> 16) & 0xff) as u8,
/* Construct byte 4 */
((arg >> 8) & 0xff) as u8,
/* Construct byte 5 */
(arg & 0xff) as u8,
/* Construct CRC: byte 6 */
crc,
]);
}
/* Send end-command sequence to SD card */
fn end_cmd(&self) {
/* SD chip select high */
self.CS_HIGH();
/* Send the cmd byte */
self.write_data(&[0xff]);
}
/*
* Returns the SD response.
* @param None
* @retval The SD Response:
* - 0xFF: Sequence failed
* - 0: Sequence succeed
*/
fn get_response(&self) -> u8 {
let result = &mut [0u8];
let mut timeout = 0x0FFF;
/* Check if response is got or a timeout is happen */
while timeout != 0 {
self.read_data(result);
/* Right response got */
if result[0] != 0xFF {
return result[0];
}
timeout -= 1;
}
/* After time out */
0xFF
}
/*
* Get SD card data response.
* @param None
* @retval The SD status: Read data response xxx0<status>1
* - status 010: Data accecpted
* - status 101: Data rejected due to a crc error
* - status 110: Data rejected due to a Write error.
* - status 111: Data rejected due to other error.
*/
fn get_dataresponse(&self) -> u8 {
let response = &mut [0u8];
/* Read resonse */
self.read_data(response);
/* Mask unused bits */
response[0] &= 0x1F;
if response[0] != 0x05 {
return 0xFF;
}
/* Wait null data */
self.read_data(response);
while response[0] == 0 {
self.read_data(response);
}
/* Return response */
0
}
/*
* Read the CSD card register
* Reading the contents of the CSD register in SPI mode is a simple
* read-block transaction.
* @param SD_csd: pointer on an SCD register structure
* @retval The SD Response:
* - `Err()`: Sequence failed
* - `Ok(info)`: Sequence succeed
*/
fn get_csdregister(&self) -> Result<SDCardCSD, ()> {
let mut csd_tab = [0u8; 18];
/* Send CMD9 (CSD register) */
self.send_cmd(CMD::CMD9, 0, 0);
/* Wait for response in the R1 format (0x00 is no errors) */
if self.get_response() != 0x00 {
self.end_cmd();
return Err(());
}
if self.get_response() != SD_START_DATA_SINGLE_BLOCK_READ {
self.end_cmd();
return Err(());
}
/* Store CSD register value on csd_tab */
/* Get CRC bytes (not really needed by us, but required by SD) */
self.read_data(&mut csd_tab);
self.end_cmd();
/* see also: https://cdn-shop.adafruit.com/datasheets/TS16GUSDHC6.pdf */
Ok(SDCardCSD {
/* Byte 0 */
CSDStruct: (csd_tab[0] & 0xC0) >> 6,
SysSpecVersion: (csd_tab[0] & 0x3C) >> 2,
Reserved1: csd_tab[0] & 0x03,
/* Byte 1 */
TAAC: csd_tab[1],
/* Byte 2 */
NSAC: csd_tab[2],
/* Byte 3 */
MaxBusClkFrec: csd_tab[3],
/* Byte 4, 5 */
CardComdClasses: (u16::from(csd_tab[4]) << 4) | ((u16::from(csd_tab[5]) & 0xF0) >> 4),
/* Byte 5 */
RdBlockLen: csd_tab[5] & 0x0F,
/* Byte 6 */
PartBlockRead: (csd_tab[6] & 0x80) >> 7,
WrBlockMisalign: (csd_tab[6] & 0x40) >> 6,
RdBlockMisalign: (csd_tab[6] & 0x20) >> 5,
DSRImpl: (csd_tab[6] & 0x10) >> 4,
Reserved2: 0,
// DeviceSize: (csd_tab[6] & 0x03) << 10,
/* Byte 7, 8, 9 */
DeviceSize: ((u32::from(csd_tab[7]) & 0x3F) << 16)
| (u32::from(csd_tab[8]) << 8)
| u32::from(csd_tab[9]),
/* Byte 10 */
EraseGrSize: (csd_tab[10] & 0x40) >> 6,
/* Byte 10, 11 */
EraseGrMul: ((csd_tab[10] & 0x3F) << 1) | ((csd_tab[11] & 0x80) >> 7),
/* Byte 11 */
WrProtectGrSize: (csd_tab[11] & 0x7F),
/* Byte 12 */
WrProtectGrEnable: (csd_tab[12] & 0x80) >> 7,
ManDeflECC: (csd_tab[12] & 0x60) >> 5,
WrSpeedFact: (csd_tab[12] & 0x1C) >> 2,
/* Byte 12,13 */
MaxWrBlockLen: ((csd_tab[12] & 0x03) << 2) | ((csd_tab[13] & 0xC0) >> 6),
/* Byte 13 */
WriteBlockPaPartial: (csd_tab[13] & 0x20) >> 5,
Reserved3: 0,
ContentProtectAppli: (csd_tab[13] & 0x01),
/* Byte 14 */
FileFormatGroup: (csd_tab[14] & 0x80) >> 7,
CopyFlag: (csd_tab[14] & 0x40) >> 6,
PermWrProtect: (csd_tab[14] & 0x20) >> 5,
TempWrProtect: (csd_tab[14] & 0x10) >> 4,
FileFormat: (csd_tab[14] & 0x0C) >> 2,
ECC: (csd_tab[14] & 0x03),
/* Byte 15 */
CSD_CRC: (csd_tab[15] & 0xFE) >> 1,
Reserved4: 1,
/* Return the reponse */
})
}
/*
* Read the CID card register.
* Reading the contents of the CID register in SPI mode is a simple
* read-block transaction.
* @param SD_cid: pointer on an CID register structure
* @retval The SD Response:
* - `Err()`: Sequence failed
* - `Ok(info)`: Sequence succeed
*/
fn get_cidregister(&self) -> Result<SDCardCID, ()> {
let mut cid_tab = [0u8; 18];
/* Send CMD10 (CID register) */
self.send_cmd(CMD::CMD10, 0, 0);
/* Wait for response in the R1 format (0x00 is no errors) */
if self.get_response() != 0x00 {
self.end_cmd();
return Err(());
}
if self.get_response() != SD_START_DATA_SINGLE_BLOCK_READ {
self.end_cmd();
return Err(());
}
/* Store CID register value on cid_tab */
/* Get CRC bytes (not really needed by us, but required by SD) */
self.read_data(&mut cid_tab);
self.end_cmd();
Ok(SDCardCID {
/* Byte 0 */
ManufacturerID: cid_tab[0],
/* Byte 1, 2 */
OEM_AppliID: (u16::from(cid_tab[1]) << 8) | u16::from(cid_tab[2]),
/* Byte 3, 4, 5, 6 */
ProdName1: (u32::from(cid_tab[3]) << 24)
| (u32::from(cid_tab[4]) << 16)
| (u32::from(cid_tab[5]) << 8)
| u32::from(cid_tab[6]),
/* Byte 7 */
ProdName2: cid_tab[7],
/* Byte 8 */
ProdRev: cid_tab[8],
/* Byte 9, 10, 11, 12 */
ProdSN: (u32::from(cid_tab[9]) << 24)
| (u32::from(cid_tab[10]) << 16)
| (u32::from(cid_tab[11]) << 8)
| u32::from(cid_tab[12]),
/* Byte 13, 14 */
Reserved1: (cid_tab[13] & 0xF0) >> 4,
ManufactDate: ((u16::from(cid_tab[13]) & 0x0F) << 8) | u16::from(cid_tab[14]),
/* Byte 15 */
CID_CRC: (cid_tab[15] & 0xFE) >> 1,
Reserved2: 1,
})
}
/*
* Returns information about specific card.
* @param cardinfo: pointer to a SD_CardInfo structure that contains all SD
* card information.
* @retval The SD Response:
* - `Err(())`: Sequence failed
* - `Ok(info)`: Sequence succeed
*/
fn get_cardinfo(&self) -> Result<SDCardInfo, ()> {
let mut info = SDCardInfo {
SD_csd: self.get_csdregister()?,
SD_cid: self.get_cidregister()?,
CardCapacity: 0,
CardBlockSize: 0,
};
info.CardBlockSize = 1 << u64::from(info.SD_csd.RdBlockLen);
info.CardCapacity = (u64::from(info.SD_csd.DeviceSize) + 1) * 1024 * info.CardBlockSize;
Ok(info)
}
/*
* Initializes the SD/SD communication in SPI mode.
* @param None
* @retval The SD Response info if succeeeded, otherwise Err
*/
pub fn init(&self) -> Result<SDCardInfo, InitError> {
/* Initialize SD_SPI */
self.lowlevel_init();
/* SD chip select high */
self.CS_HIGH();
/* NOTE: this reset doesn't always seem to work if the SD access was broken off in the
* middle of an operation: CMDFailed(CMD0, 127). */
/* Send dummy byte 0xFF, 10 times with CS high */
/* Rise CS and MOSI for 80 clocks cycles */
/* Send dummy byte 0xFF */
self.write_data(&[0xff; 10]);
/*------------Put SD in SPI mode--------------*/
/* SD initialized and set to SPI mode properly */
/* Send software reset */
self.send_cmd(CMD::CMD0, 0, 0x95);
let result = self.get_response();
self.end_cmd();
if result != 0x01 {
return Err(InitError::CMDFailed(CMD::CMD0, result));
}
/* Check voltage range */
self.send_cmd(CMD::CMD8, 0x01AA, 0x87);
/* 0x01 or 0x05 */
let result = self.get_response();
let mut frame = [0u8; 4];
self.read_data(&mut frame);
self.end_cmd();
if result != 0x01 {
return Err(InitError::CMDFailed(CMD::CMD8, result));
}
let mut index = 255;
while index != 0 {
/* <ACMD> */
self.send_cmd(CMD::CMD55, 0, 0);
let result = self.get_response();
self.end_cmd();
if result != 0x01 {
return Err(InitError::CMDFailed(CMD::CMD55, result));
}
/* Initiate SDC initialization process */
self.send_cmd(CMD::ACMD41, 0x40000000, 0);
let result = self.get_response();
self.end_cmd();
if result == 0x00 {
break;
}
index -= 1;
}
if index == 0 {
return Err(InitError::CMDFailed(CMD::ACMD41, result));
}
index = 255;
let mut frame = [0u8; 4];
while index != 0 {
/* Read OCR */
self.send_cmd(CMD::CMD58, 0, 1);
let result = self.get_response();
self.read_data(&mut frame);
self.end_cmd();
if result == 0 {
break;
}
index -= 1;
}
if index == 0 {
return Err(InitError::CMDFailed(CMD::CMD58, result));
}
if (frame[0] & 0x40) == 0 {
return Err(InitError::CardCapacityStatusNotSet(frame));
}
self.HIGH_SPEED_ENABLE();
self.get_cardinfo()
.map_err(|_| InitError::CannotGetCardInfo)
}
/*
* Reads a block of data from the SD.
* @param data_buf: slice that receives the data read from the SD.
* @param sector: SD's internal address to read from.
* @retval The SD Response:
* - `Err(())`: Sequence failed
* - `Ok(())`: Sequence succeed
*/
pub fn read_sector(&self, data_buf: &mut [u8], sector: u32) -> Result<(), ()> {
assert!(data_buf.len() >= SEC_LEN && (data_buf.len() % SEC_LEN) == 0);
/* Send CMD17 to read one block, or CMD18 for multiple */
let flag = if data_buf.len() == SEC_LEN {
self.send_cmd(CMD::CMD17, sector, 0);
false
} else {
self.send_cmd(CMD::CMD18, sector, 0);
true
};
/* Check if the SD acknowledged the read block command: R1 response (0x00: no errors) */
if self.get_response() != 0x00 {
self.end_cmd();
return Err(());
}
let mut error = false;
//let mut dma_chunk = [0u32; SEC_LEN];
let mut tmp_chunk = [0u8; SEC_LEN];
for chunk in data_buf.chunks_mut(SEC_LEN) {
if self.get_response() != SD_START_DATA_SINGLE_BLOCK_READ {
error = true;
break;
}
/* Read the SD block data : read NumByteToRead data */
//self.read_data_dma(&mut dma_chunk);
self.read_data(&mut tmp_chunk);
/* Place the data received as u32 units from DMA into the u8 target buffer */
for (a, b) in chunk.iter_mut().zip(/*dma_chunk*/ tmp_chunk.iter()) {
//*a = (b & 0xff) as u8;
*a = *b;
}
/* Get CRC bytes (not really needed by us, but required by SD) */
let mut frame = [0u8; 2];
self.read_data(&mut frame);
}
self.end_cmd();
if flag {
self.send_cmd(CMD::CMD12, 0, 0);
self.get_response();
self.end_cmd();
self.end_cmd();
}
/* It is an error if not everything requested was read */
if error {
Err(())
} else {
Ok(())
}
}
/*
* Writes a block to the SD
* @param data_buf: slice containing the data to be written to the SD.
* @param sector: address to write on.
* @retval The SD Response:
* - `Err(())`: Sequence failed
* - `Ok(())`: Sequence succeed
*/
pub fn write_sector(&self, data_buf: &[u8], sector: u32) -> Result<(), ()> {
assert!(data_buf.len() >= SEC_LEN && (data_buf.len() % SEC_LEN) == 0);
let mut frame = [0xff, 0x00];
if data_buf.len() == SEC_LEN {
frame[1] = SD_START_DATA_SINGLE_BLOCK_WRITE;
self.send_cmd(CMD::CMD24, sector, 0);
} else {
frame[1] = SD_START_DATA_MULTIPLE_BLOCK_WRITE;
self.send_cmd(
CMD::ACMD23,
(data_buf.len() / SEC_LEN).try_into().unwrap(),
0,
);
self.get_response();
self.end_cmd();
self.send_cmd(CMD::CMD25, sector, 0);
}
/* Check if the SD acknowledged the write block command: R1 response (0x00: no errors) */
if self.get_response() != 0x00 {
self.end_cmd();
return Err(());
}
//let mut dma_chunk = [0u32; SEC_LEN];
let mut tmp_chunk = [0u8; SEC_LEN];
for chunk in data_buf.chunks(SEC_LEN) {
/* Send the data token to signify the start of the data */
self.write_data(&frame);
/* Write the block data to SD : write count data by block */
for (a, &b) in /*dma_chunk*/ tmp_chunk.iter_mut().zip(chunk.iter()) {
//*a = b.into();
*a = b;
}
//self.write_data_dma(&mut dma_chunk);
self.write_data(&tmp_chunk);
/* Put dummy CRC bytes */
self.write_data(&[0xff, 0xff]);
/* Read data response */
if self.get_dataresponse() != 0x00 {
self.end_cmd();
return Err(());
}
}
self.end_cmd();
self.end_cmd();
Ok(())
}
}
/** GPIOHS GPIO number to use for controlling the SD card CS pin */
const SD_CS_GPIONUM: u8 = 7;
/** CS value passed to SPI controller, this is a dummy value as SPI0_CS3 is not mapping to anything
* in the FPIOA */
const SD_CS: u32 = 3;
/** Connect pins to internal functions */
fn io_init() {
fpioa::set_function(io::SPI0_SCLK, fpioa::function::SPI0_SCLK);
fpioa::set_function(io::SPI0_MOSI, fpioa::function::SPI0_D0);
fpioa::set_function(io::SPI0_MISO, fpioa::function::SPI0_D1);
fpioa::set_function(io::SPI0_CS0, fpioa::function::gpiohs(SD_CS_GPIONUM));
fpioa::set_io_pull(io::SPI0_CS0, fpioa::pull::DOWN); // GPIO output=pull down
}
lazy_static! {
static ref PERIPHERALS: UPSafeCell<Peripherals> =
unsafe { UPSafeCell::new(Peripherals::take().unwrap()) };
}
fn init_sdcard() -> SDCard<SPIImpl<SPI0>> {
// wait previous output
usleep(100000);
let peripherals = unsafe { Peripherals::steal() };
sysctl::pll_set_freq(sysctl::pll::PLL0, 800_000_000).unwrap();
sysctl::pll_set_freq(sysctl::pll::PLL1, 300_000_000).unwrap();
sysctl::pll_set_freq(sysctl::pll::PLL2, 45_158_400).unwrap();
let clocks = k210_hal::clock::Clocks::new();
peripherals.UARTHS.configure(115_200.bps(), &clocks);
io_init();
let spi = peripherals.SPI0.constrain();
let sd = SDCard::new(spi, SD_CS, SD_CS_GPIONUM);
let info = sd.init().unwrap();
let num_sectors = info.CardCapacity / 512;
assert!(num_sectors > 0);
println!("init sdcard!");
sd
}
pub struct SDCardWrapper(UPSafeCell<SDCard<SPIImpl<SPI0>>>);
impl SDCardWrapper {
pub fn new() -> Self {
unsafe { Self(UPSafeCell::new(init_sdcard())) }
}
}
impl BlockDevice for SDCardWrapper {
fn read_block(&self, block_id: usize, buf: &mut [u8]) {
self.0
.exclusive_access()
.read_sector(buf, block_id as u32)
.unwrap();
}
fn write_block(&self, block_id: usize, buf: &[u8]) {
self.0
.exclusive_access()
.write_sector(buf, block_id as u32)
.unwrap();
}
}

@ -0,0 +1,80 @@
use super::BlockDevice;
use crate::mm::{
frame_alloc, frame_dealloc, kernel_token, FrameTracker, PageTable, PhysAddr, PhysPageNum,
StepByOne, VirtAddr,
};
use crate::sync::UPSafeCell;
use alloc::vec::Vec;
use lazy_static::*;
use virtio_drivers::{VirtIOBlk, VirtIOHeader};
#[allow(unused)]
const VIRTIO0: usize = 0x10001000;
pub struct VirtIOBlock(UPSafeCell<VirtIOBlk<'static>>);
lazy_static! {
static ref QUEUE_FRAMES: UPSafeCell<Vec<FrameTracker>> = unsafe { UPSafeCell::new(Vec::new()) };
}
impl BlockDevice for VirtIOBlock {
fn read_block(&self, block_id: usize, buf: &mut [u8]) {
self.0
.exclusive_access()
.read_block(block_id, buf)
.expect("Error when reading VirtIOBlk");
}
fn write_block(&self, block_id: usize, buf: &[u8]) {
self.0
.exclusive_access()
.write_block(block_id, buf)
.expect("Error when writing VirtIOBlk");
}
}
impl VirtIOBlock {
#[allow(unused)]
pub fn new() -> Self {
unsafe {
Self(UPSafeCell::new(
VirtIOBlk::new(&mut *(VIRTIO0 as *mut VirtIOHeader)).unwrap(),
))
}
}
}
#[no_mangle]
pub extern "C" fn virtio_dma_alloc(pages: usize) -> PhysAddr {
let mut ppn_base = PhysPageNum(0);
for i in 0..pages {
let frame = frame_alloc().unwrap();
if i == 0 {
ppn_base = frame.ppn;
}
assert_eq!(frame.ppn.0, ppn_base.0 + i);
QUEUE_FRAMES.exclusive_access().push(frame);
}
ppn_base.into()
}
#[no_mangle]
pub extern "C" fn virtio_dma_dealloc(pa: PhysAddr, pages: usize) -> i32 {
let mut ppn_base: PhysPageNum = pa.into();
for _ in 0..pages {
frame_dealloc(ppn_base);
ppn_base.step();
}
0
}
#[no_mangle]
pub extern "C" fn virtio_phys_to_virt(paddr: PhysAddr) -> VirtAddr {
VirtAddr(paddr.0)
}
#[no_mangle]
pub extern "C" fn virtio_virt_to_phys(vaddr: VirtAddr) -> PhysAddr {
PageTable::from_token(kernel_token())
.translate_va(vaddr)
.unwrap()
}

@ -0,0 +1,3 @@
pub mod block;
pub use block::BLOCK_DEVICE;

@ -0,0 +1,154 @@
//! `Arc<Inode>` -> `OSInodeInner`: In order to open files concurrently
//! we need to wrap `Inode` into `Arc`,but `Mutex` in `Inode` prevents
//! file systems from being accessed simultaneously
//!
//! `UPSafeCell<OSInodeInner>` -> `OSInode`: for static `ROOT_INODE`,we
//! need to wrap `OSInodeInner` into `UPSafeCell`
use super::File;
use crate::drivers::BLOCK_DEVICE;
use crate::mm::UserBuffer;
use crate::sync::UPSafeCell;
use alloc::sync::Arc;
use alloc::vec::Vec;
use bitflags::*;
use easy_fs::{EasyFileSystem, Inode};
use lazy_static::*;
/// A wrapper around a filesystem inode
/// to implement File trait atop
pub struct OSInode {
readable: bool,
writable: bool,
inner: UPSafeCell<OSInodeInner>,
}
/// The OS inode inner in 'UPSafeCell'
pub struct OSInodeInner {
offset: usize,
inode: Arc<Inode>,
}
impl OSInode {
/// Construct an OS inode from a inode
pub fn new(readable: bool, writable: bool, inode: Arc<Inode>) -> Self {
Self {
readable,
writable,
inner: unsafe { UPSafeCell::new(OSInodeInner { offset: 0, inode }) },
}
}
/// Read all data inside a inode into vector
pub fn read_all(&self) -> Vec<u8> {
let mut inner = self.inner.exclusive_access();
let mut buffer = [0u8; 512];
let mut v: Vec<u8> = Vec::new();
loop {
let len = inner.inode.read_at(inner.offset, &mut buffer);
if len == 0 {
break;
}
inner.offset += len;
v.extend_from_slice(&buffer[..len]);
}
v
}
}
lazy_static! {
pub static ref ROOT_INODE: Arc<Inode> = {
let efs = EasyFileSystem::open(BLOCK_DEVICE.clone());
Arc::new(EasyFileSystem::root_inode(&efs))
};
}
/// List all files in the filesystems
pub fn list_apps() {
println!("/**** APPS ****");
for app in ROOT_INODE.ls() {
println!("{}", app);
}
println!("**************/");
}
bitflags! {
///Open file flags
pub struct OpenFlags: u32 {
///Read only
const RDONLY = 0;
///Write only
const WRONLY = 1 << 0;
///Read & Write
const RDWR = 1 << 1;
///Allow create
const CREATE = 1 << 9;
///Clear file and return an empty one
const TRUNC = 1 << 10;
}
}
impl OpenFlags {
/// Do not check validity for simplicity
/// Return (readable, writable)
pub fn read_write(&self) -> (bool, bool) {
if self.is_empty() {
(true, false)
} else if self.contains(Self::WRONLY) {
(false, true)
} else {
(true, true)
}
}
}
///Open file with flags
pub fn open_file(name: &str, flags: OpenFlags) -> Option<Arc<OSInode>> {
let (readable, writable) = flags.read_write();
if flags.contains(OpenFlags::CREATE) {
if let Some(inode) = ROOT_INODE.find(name) {
// clear size
inode.clear();
Some(Arc::new(OSInode::new(readable, writable, inode)))
} else {
// create file
ROOT_INODE
.create(name)
.map(|inode| Arc::new(OSInode::new(readable, writable, inode)))
}
} else {
ROOT_INODE.find(name).map(|inode| {
if flags.contains(OpenFlags::TRUNC) {
inode.clear();
}
Arc::new(OSInode::new(readable, writable, inode))
})
}
}
impl File for OSInode {
fn readable(&self) -> bool {
self.readable
}
fn writable(&self) -> bool {
self.writable
}
fn read(&self, mut buf: UserBuffer) -> usize {
let mut inner = self.inner.exclusive_access();
let mut total_read_size = 0usize;
for slice in buf.buffers.iter_mut() {
let read_size = inner.inode.read_at(inner.offset, *slice);
if read_size == 0 {
break;
}
inner.offset += read_size;
total_read_size += read_size;
}
total_read_size
}
fn write(&self, buf: UserBuffer) -> usize {
let mut inner = self.inner.exclusive_access();
let mut total_write_size = 0usize;
for slice in buf.buffers.iter() {
let write_size = inner.inode.write_at(inner.offset, *slice);
assert_eq!(write_size, slice.len());
inner.offset += write_size;
total_write_size += write_size;
}
total_write_size
}
}

@ -1,21 +1,19 @@
mod pipe;
//! File system in os
mod inode;
mod stdio;
use crate::mm::UserBuffer;
use core::any::Any;
pub trait File : Any + Send + Sync {
/// File trait
pub trait File: Send + Sync {
/// If readable
fn readable(&self) -> bool;
/// If writable
fn writable(&self) -> bool;
/// Read file to `UserBuffer`
fn read(&self, buf: UserBuffer) -> usize;
/// Write `UserBuffer` to file
fn write(&self, buf: UserBuffer) -> usize;
fn as_any_ref(&self) -> &dyn Any;
}
impl dyn File {
#[allow(unused)]
pub fn downcast_ref<T: File>(&self) -> Option<&T> {
self.as_any_ref().downcast_ref::<T>()
}
}
pub use pipe::{Pipe, make_pipe};
pub use stdio::{Stdin, Stdout};
pub use inode::{list_apps, open_file, OSInode, OpenFlags};
pub use stdio::{Stdin, Stdout};

@ -1,167 +0,0 @@
use super::File;
use alloc::sync::{Arc, Weak};
use spin::Mutex;
use crate::mm::{
UserBuffer,
};
use crate::task::suspend_current_and_run_next;
use core::any::Any;
pub struct Pipe {
readable: bool,
writable: bool,
buffer: Arc<Mutex<PipeRingBuffer>>,
}
impl Pipe {
pub fn read_end_with_buffer(buffer: Arc<Mutex<PipeRingBuffer>>) -> Self {
Self {
readable: true,
writable: false,
buffer,
}
}
pub fn write_end_with_buffer(buffer: Arc<Mutex<PipeRingBuffer>>) -> Self {
Self {
readable: false,
writable: true,
buffer,
}
}
}
const RING_BUFFER_SIZE: usize = 32;
#[derive(Copy, Clone, PartialEq)]
enum RingBufferStatus {
FULL,
EMPTY,
NORMAL,
}
pub struct PipeRingBuffer {
arr: [u8; RING_BUFFER_SIZE],
head: usize,
tail: usize,
status: RingBufferStatus,
write_end: Option<Weak<Pipe>>,
}
impl PipeRingBuffer {
pub fn new() -> Self {
Self {
arr: [0; RING_BUFFER_SIZE],
head: 0,
tail: 0,
status: RingBufferStatus::EMPTY,
write_end: None,
}
}
pub fn set_write_end(&mut self, write_end: &Arc<Pipe>) {
self.write_end = Some(Arc::downgrade(write_end));
}
pub fn write_byte(&mut self, byte: u8) {
self.status = RingBufferStatus::NORMAL;
self.arr[self.tail] = byte;
self.tail = (self.tail + 1) % RING_BUFFER_SIZE;
if self.tail == self.head {
self.status = RingBufferStatus::FULL;
}
}
pub fn read_byte(&mut self) -> u8 {
self.status = RingBufferStatus::NORMAL;
let c = self.arr[self.head];
self.head = (self.head + 1) % RING_BUFFER_SIZE;
if self.head == self.tail {
self.status = RingBufferStatus::EMPTY;
}
c
}
pub fn available_read(&self) -> usize {
if self.status == RingBufferStatus::EMPTY {
0
} else {
if self.tail > self.head {
self.tail - self.head
} else {
self.tail + RING_BUFFER_SIZE - self.head
}
}
}
pub fn available_write(&self) -> usize {
if self.status == RingBufferStatus::FULL {
0
} else {
RING_BUFFER_SIZE - self.available_read()
}
}
pub fn all_write_ends_closed(&self) -> bool {
self.write_end.as_ref().unwrap().upgrade().is_none()
}
}
/// Return (read_end, write_end)
pub fn make_pipe() -> (Arc<Pipe>, Arc<Pipe>) {
let buffer = Arc::new(Mutex::new(PipeRingBuffer::new()));
let read_end = Arc::new(
Pipe::read_end_with_buffer(buffer.clone())
);
let write_end = Arc::new(
Pipe::write_end_with_buffer(buffer.clone())
);
buffer.lock().set_write_end(&write_end);
(read_end, write_end)
}
impl File for Pipe {
fn read(&self, buf: UserBuffer) -> usize {
assert_eq!(self.readable, true);
let mut buf_iter = buf.into_iter();
let mut read_size = 0usize;
loop {
let mut ring_buffer = self.buffer.lock();
let loop_read = ring_buffer.available_read();
if loop_read == 0 {
if ring_buffer.all_write_ends_closed() {
return read_size;
}
drop(ring_buffer);
suspend_current_and_run_next();
continue;
}
// read at most loop_read bytes
for _ in 0..loop_read {
if let Some(byte_ref) = buf_iter.next() {
unsafe { *byte_ref = ring_buffer.read_byte(); }
read_size += 1;
} else {
return read_size;
}
}
}
}
fn write(&self, buf: UserBuffer) -> usize {
assert_eq!(self.writable, true);
let mut buf_iter = buf.into_iter();
let mut write_size = 0usize;
loop {
let mut ring_buffer = self.buffer.lock();
let loop_write = ring_buffer.available_write();
if loop_write == 0 {
drop(ring_buffer);
suspend_current_and_run_next();
continue;
}
// write at most loop_write bytes
for _ in 0..loop_write {
if let Some(byte_ref) = buf_iter.next() {
ring_buffer.write_byte(unsafe { *byte_ref });
write_size += 1;
} else {
return write_size;
}
}
}
}
fn as_any_ref(&self) -> &dyn Any { self }
}

@ -1,14 +1,20 @@
//!Stdin & Stdout
use super::File;
use crate::mm::{UserBuffer};
use crate::mm::UserBuffer;
use crate::sbi::console_getchar;
use crate::task::suspend_current_and_run_next;
use core::any::Any;
///Standard input
pub struct Stdin;
///Standard output
pub struct Stdout;
impl File for Stdin {
fn readable(&self) -> bool {
true
}
fn writable(&self) -> bool {
false
}
fn read(&self, mut user_buf: UserBuffer) -> usize {
assert_eq!(user_buf.len(), 1);
// busy loop
@ -23,17 +29,24 @@ impl File for Stdin {
}
}
let ch = c as u8;
unsafe { user_buf.buffers[0].as_mut_ptr().write_volatile(ch); }
unsafe {
user_buf.buffers[0].as_mut_ptr().write_volatile(ch);
}
1
}
fn write(&self, _user_buf: UserBuffer) -> usize {
panic!("Cannot write to stdin!");
}
fn as_any_ref(&self) -> &dyn Any { self }
}
impl File for Stdout {
fn read(&self, _user_buf: UserBuffer) -> usize{
fn readable(&self) -> bool {
false
}
fn writable(&self) -> bool {
true
}
fn read(&self, _user_buf: UserBuffer) -> usize {
panic!("Cannot read from stdout!");
}
fn write(&self, user_buf: UserBuffer) -> usize {
@ -42,5 +55,4 @@ impl File for Stdout {
}
user_buf.len()
}
fn as_any_ref(&self) -> &dyn Any { self }
}
}

@ -1,10 +1,16 @@
use core::panic::PanicInfo;
//! The panic handler
use crate::sbi::shutdown;
use core::panic::PanicInfo;
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
if let Some(location) = info.location() {
println!("[kernel] Panicked at {}:{} {}", location.file(), location.line(), info.message().unwrap());
println!(
"[kernel] Panicked at {}:{} {}",
location.file(),
location.line(),
info.message().unwrap()
);
} else {
println!("[kernel] Panicked: {}", info.message().unwrap());
}

@ -22,6 +22,7 @@ SECTIONS
srodata = .;
.rodata : {
*(.rodata .rodata.*)
*(.srodata .srodata.*)
}
. = ALIGN(4K);
@ -29,6 +30,7 @@ SECTIONS
sdata = .;
.data : {
*(.data .data.*)
*(.sdata .sdata.*)
}
. = ALIGN(4K);
@ -38,6 +40,7 @@ SECTIONS
*(.bss.stack)
sbss = .;
*(.bss .bss.*)
*(.sbss .sbss.*)
}
. = ALIGN(4K);

@ -0,0 +1,53 @@
OUTPUT_ARCH(riscv)
ENTRY(_start)
BASE_ADDRESS = 0x80200000;
SECTIONS
{
. = BASE_ADDRESS;
skernel = .;
stext = .;
.text : {
*(.text.entry)
. = ALIGN(4K);
strampoline = .;
*(.text.trampoline);
. = ALIGN(4K);
*(.text .text.*)
}
. = ALIGN(4K);
etext = .;
srodata = .;
.rodata : {
*(.rodata .rodata.*)
*(.srodata .srodata.*)
}
. = ALIGN(4K);
erodata = .;
sdata = .;
.data : {
*(.data .data.*)
*(.sdata .sdata.*)
}
. = ALIGN(4K);
edata = .;
sbss_with_stack = .;
.bss : {
*(.bss.stack)
sbss = .;
*(.bss .bss.*)
*(.sbss .sbss.*)
}
. = ALIGN(4K);
ebss = .;
ekernel = .;
/DISCARD/ : {
*(.eh_frame)
}
}

@ -1,62 +0,0 @@
use alloc::vec::Vec;
pub fn get_num_app() -> usize {
extern "C" { fn _num_app(); }
unsafe { (_num_app as usize as *const usize).read_volatile() }
}
pub fn get_app_data(app_id: usize) -> &'static [u8] {
extern "C" { fn _num_app(); }
let num_app_ptr = _num_app as usize as *const usize;
let num_app = get_num_app();
let app_start = unsafe {
core::slice::from_raw_parts(num_app_ptr.add(1), num_app + 1)
};
assert!(app_id < num_app);
unsafe {
core::slice::from_raw_parts(
app_start[app_id] as *const u8,
app_start[app_id + 1] - app_start[app_id]
)
}
}
#[allow(unused)]
pub fn get_app_data_by_name(name: &str) -> Option<&'static [u8]> {
let num_app = get_num_app();
let app_names = app_names();
(0..num_app)
.find(|&i| app_names[i] == name)
.map(|i| get_app_data(i))
}
#[allow(unused)]
fn app_names() -> Vec<&'static str> {
let num_app = get_num_app();
extern "C" { fn _app_names(); }
let mut start = _app_names as usize as *const u8;
let mut v = Vec::new();
unsafe {
for _ in 0..num_app {
let mut end = start;
while end.read_volatile() != '\n' as u8 {
end = end.add(1);
}
let slice = core::slice::from_raw_parts(start, end as usize - start as usize);
let str = core::str::from_utf8(slice).unwrap();
v.push(str);
// Mention that there is a extra char between names
start = end.add(2);
}
}
v
}
pub fn list_apps() {
let apps = app_names();
println!("/**** APPS ****");
for app in apps {
println!("{}", app);
}
println!("**************/")
}

@ -1,9 +1,29 @@
//! The main module and entrypoint
//!
//! Various facilities of the kernels are implemented as submodules. The most
//! important ones are:
//!
//! - [`trap`]: Handles all cases of switching from userspace to the kernel
//! - [`task`]: Task management
//! - [`syscall`]: System call handling and implementation
//! - [`mm`]: Address map using SV39
//! - [`sync`]: Wrap a static data structure inside it so that we are able to access it without any `unsafe`.
//! - [`fs`]: Separate user from file system with some structures
//!
//! The operating system also starts in this module. Kernel code starts
//! executing from `entry.asm`, after which [`rust_main()`] is called to
//! initialize various pieces of functionality. (See its source code for
//! details.)
//!
//! We then call [`task::run_tasks()`] and for the first time go to
//! userspace.
#![deny(missing_docs)]
#![deny(warnings)]
#![allow(unused_imports)]
#![no_std]
#![no_main]
#![feature(global_asm)]
#![feature(llvm_asm)]
#![feature(panic_info_message)]
#![feature(const_in_array_repeat_expressions)]
#![feature(alloc_error_handler)]
extern crate alloc;
@ -11,44 +31,54 @@ extern crate alloc;
#[macro_use]
extern crate bitflags;
#[cfg(feature = "board_k210")]
#[path = "boards/k210.rs"]
mod board;
#[cfg(not(any(feature = "board_k210")))]
#[path = "boards/qemu.rs"]
mod board;
#[macro_use]
mod console;
mod lang_items;
mod sbi;
mod syscall;
mod trap;
mod loader;
mod config;
mod task;
mod timer;
mod mm;
mod fs;
mod drivers;
pub mod fs;
pub mod lang_items;
pub mod mm;
pub mod sbi;
pub mod sync;
pub mod syscall;
pub mod task;
pub mod timer;
pub mod trap;
global_asm!(include_str!("entry.asm"));
global_asm!(include_str!("link_app.S"));
use core::arch::global_asm;
global_asm!(include_str!("entry.asm"));
/// clear BSS segment
fn clear_bss() {
extern "C" {
fn sbss();
fn ebss();
}
(sbss as usize..ebss as usize).for_each(|a| {
unsafe { (a as *mut u8).write_volatile(0) }
});
unsafe {
core::slice::from_raw_parts_mut(sbss as usize as *mut u8, ebss as usize - sbss as usize)
.fill(0);
}
}
#[no_mangle]
/// the rust entry-point of os
pub fn rust_main() -> ! {
clear_bss();
println!("[kernel] Hello, world!");
mm::init();
mm::remap_test();
task::add_initproc();
println!("after initproc!");
trap::init();
trap::enable_timer_interrupt();
timer::set_next_trigger();
loader::list_apps();
fs::list_apps();
task::add_initproc();
task::run_tasks();
panic!("Unreachable in rust_main!");
}
}

@ -1,18 +1,31 @@
use crate::config::{PAGE_SIZE, PAGE_SIZE_BITS};
//! Implementation of physical and virtual address and page number.
use super::PageTableEntry;
use crate::config::{PAGE_SIZE, PAGE_SIZE_BITS};
use core::fmt::{self, Debug, Formatter};
const PA_WIDTH_SV39: usize = 56;
const VA_WIDTH_SV39: usize = 39;
const PPN_WIDTH_SV39: usize = PA_WIDTH_SV39 - PAGE_SIZE_BITS;
const VPN_WIDTH_SV39: usize = VA_WIDTH_SV39 - PAGE_SIZE_BITS;
/// Definitions
#[repr(C)]
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq)]
pub struct PhysAddr(pub usize);
#[repr(C)]
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq)]
///virtual address
pub struct VirtAddr(pub usize);
#[repr(C)]
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq)]
///phiscal page number
pub struct PhysPageNum(pub usize);
#[repr(C)]
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq)]
///virtual page number
pub struct VirtPageNum(pub usize);
/// Debugging
@ -43,35 +56,67 @@ impl Debug for PhysPageNum {
/// usize -> T: usize.into()
impl From<usize> for PhysAddr {
fn from(v: usize) -> Self { Self(v) }
fn from(v: usize) -> Self {
Self(v & ((1 << PA_WIDTH_SV39) - 1))
}
}
impl From<usize> for PhysPageNum {
fn from(v: usize) -> Self { Self(v) }
fn from(v: usize) -> Self {
Self(v & ((1 << PPN_WIDTH_SV39) - 1))
}
}
impl From<usize> for VirtAddr {
fn from(v: usize) -> Self { Self(v) }
fn from(v: usize) -> Self {
Self(v & ((1 << VA_WIDTH_SV39) - 1))
}
}
impl From<usize> for VirtPageNum {
fn from(v: usize) -> Self { Self(v) }
fn from(v: usize) -> Self {
Self(v & ((1 << VPN_WIDTH_SV39) - 1))
}
}
impl From<PhysAddr> for usize {
fn from(v: PhysAddr) -> Self { v.0 }
fn from(v: PhysAddr) -> Self {
v.0
}
}
impl From<PhysPageNum> for usize {
fn from(v: PhysPageNum) -> Self { v.0 }
fn from(v: PhysPageNum) -> Self {
v.0
}
}
impl From<VirtAddr> for usize {
fn from(v: VirtAddr) -> Self { v.0 }
fn from(v: VirtAddr) -> Self {
if v.0 >= (1 << (VA_WIDTH_SV39 - 1)) {
v.0 | (!((1 << VA_WIDTH_SV39) - 1))
} else {
v.0
}
}
}
impl From<VirtPageNum> for usize {
fn from(v: VirtPageNum) -> Self { v.0 }
fn from(v: VirtPageNum) -> Self {
v.0
}
}
///
impl VirtAddr {
pub fn floor(&self) -> VirtPageNum { VirtPageNum(self.0 / PAGE_SIZE) }
pub fn ceil(&self) -> VirtPageNum { VirtPageNum((self.0 + PAGE_SIZE - 1) / PAGE_SIZE) }
pub fn page_offset(&self) -> usize { self.0 & (PAGE_SIZE - 1) }
pub fn aligned(&self) -> bool { self.page_offset() == 0 }
///`VirtAddr`->`VirtPageNum`
pub fn floor(&self) -> VirtPageNum {
VirtPageNum(self.0 / PAGE_SIZE)
}
///`VirtAddr`->`VirtPageNum`
pub fn ceil(&self) -> VirtPageNum {
VirtPageNum((self.0 - 1 + PAGE_SIZE) / PAGE_SIZE)
}
///Get page offset
pub fn page_offset(&self) -> usize {
self.0 & (PAGE_SIZE - 1)
}
///Check page aligned
pub fn aligned(&self) -> bool {
self.page_offset() == 0
}
}
impl From<VirtAddr> for VirtPageNum {
fn from(v: VirtAddr) -> Self {
@ -80,13 +125,27 @@ impl From<VirtAddr> for VirtPageNum {
}
}
impl From<VirtPageNum> for VirtAddr {
fn from(v: VirtPageNum) -> Self { Self(v.0 << PAGE_SIZE_BITS) }
fn from(v: VirtPageNum) -> Self {
Self(v.0 << PAGE_SIZE_BITS)
}
}
impl PhysAddr {
pub fn floor(&self) -> PhysPageNum { PhysPageNum(self.0 / PAGE_SIZE) }
pub fn ceil(&self) -> PhysPageNum { PhysPageNum((self.0 + PAGE_SIZE - 1) / PAGE_SIZE) }
pub fn page_offset(&self) -> usize { self.0 & (PAGE_SIZE - 1) }
pub fn aligned(&self) -> bool { self.page_offset() == 0 }
///`PhysAddr`->`PhysPageNum`
pub fn floor(&self) -> PhysPageNum {
PhysPageNum(self.0 / PAGE_SIZE)
}
///`PhysAddr`->`PhysPageNum`
pub fn ceil(&self) -> PhysPageNum {
PhysPageNum((self.0 - 1 + PAGE_SIZE) / PAGE_SIZE)
}
///Get page offset
pub fn page_offset(&self) -> usize {
self.0 & (PAGE_SIZE - 1)
}
///Check page aligned
pub fn aligned(&self) -> bool {
self.page_offset() == 0
}
}
impl From<PhysAddr> for PhysPageNum {
fn from(v: PhysAddr) -> Self {
@ -95,10 +154,13 @@ impl From<PhysAddr> for PhysPageNum {
}
}
impl From<PhysPageNum> for PhysAddr {
fn from(v: PhysPageNum) -> Self { Self(v.0 << PAGE_SIZE_BITS) }
fn from(v: PhysPageNum) -> Self {
Self(v.0 << PAGE_SIZE_BITS)
}
}
impl VirtPageNum {
///Return VPN 3 level index
pub fn indexes(&self) -> [usize; 3] {
let mut vpn = self.0;
let mut idx = [0usize; 3];
@ -111,32 +173,35 @@ impl VirtPageNum {
}
impl PhysAddr {
///Get reference to `PhysAddr` value
pub fn get_ref<T>(&self) -> &'static T {
unsafe { (self.0 as *const T).as_ref().unwrap() }
}
///Get mutable reference to `PhysAddr` value
pub fn get_mut<T>(&self) -> &'static mut T {
unsafe {
(self.0 as *mut T).as_mut().unwrap()
}
unsafe { (self.0 as *mut T).as_mut().unwrap() }
}
}
impl PhysPageNum {
///Get `PageTableEntry` on `PhysPageNum`
pub fn get_pte_array(&self) -> &'static mut [PageTableEntry] {
let pa: PhysAddr = self.clone().into();
unsafe {
core::slice::from_raw_parts_mut(pa.0 as *mut PageTableEntry, 512)
}
let pa: PhysAddr = (*self).into();
unsafe { core::slice::from_raw_parts_mut(pa.0 as *mut PageTableEntry, 512) }
}
///Get u8 array on `PhysPageNum`
pub fn get_bytes_array(&self) -> &'static mut [u8] {
let pa: PhysAddr = self.clone().into();
unsafe {
core::slice::from_raw_parts_mut(pa.0 as *mut u8, 4096)
}
let pa: PhysAddr = (*self).into();
unsafe { core::slice::from_raw_parts_mut(pa.0 as *mut u8, 4096) }
}
///Get Get mutable reference to `PhysAddr` value on `PhysPageNum`
pub fn get_mut<T>(&self) -> &'static mut T {
let pa: PhysAddr = self.clone().into();
let pa: PhysAddr = (*self).into();
pa.get_mut()
}
}
///Add value by one
pub trait StepByOne {
///Add value by one
fn step(&mut self);
}
impl StepByOne for VirtPageNum {
@ -144,43 +209,66 @@ impl StepByOne for VirtPageNum {
self.0 += 1;
}
}
impl StepByOne for PhysPageNum {
fn step(&mut self) {
self.0 += 1;
}
}
#[derive(Copy, Clone)]
pub struct SimpleRange<T> where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug, {
/// a simple range structure for type T
pub struct SimpleRange<T>
where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug,
{
l: T,
r: T,
}
impl<T> SimpleRange<T> where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug, {
impl<T> SimpleRange<T>
where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug,
{
pub fn new(start: T, end: T) -> Self {
assert!(start <= end, "start {:?} > end {:?}!", start, end);
Self { l: start, r: end }
}
pub fn get_start(&self) -> T { self.l }
pub fn get_end(&self) -> T { self.r }
pub fn get_start(&self) -> T {
self.l
}
pub fn get_end(&self) -> T {
self.r
}
}
impl<T> IntoIterator for SimpleRange<T> where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug, {
impl<T> IntoIterator for SimpleRange<T>
where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug,
{
type Item = T;
type IntoIter = SimpleRangeIterator<T>;
fn into_iter(self) -> Self::IntoIter {
SimpleRangeIterator::new(self.l, self.r)
}
}
pub struct SimpleRangeIterator<T> where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug, {
/// iterator for the simple range structure
pub struct SimpleRangeIterator<T>
where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug,
{
current: T,
end: T,
}
impl<T> SimpleRangeIterator<T> where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug, {
impl<T> SimpleRangeIterator<T>
where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug,
{
pub fn new(l: T, r: T) -> Self {
Self { current: l, end: r, }
Self { current: l, end: r }
}
}
impl<T> Iterator for SimpleRangeIterator<T> where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug, {
impl<T> Iterator for SimpleRangeIterator<T>
where
T: StepByOne + Copy + PartialEq + PartialOrd + Debug,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
if self.current == self.end {
@ -192,4 +280,5 @@ impl<T> Iterator for SimpleRangeIterator<T> where
}
}
}
pub type VPNRange = SimpleRange<VirtPageNum>;
/// a simple range structure for virtual page number
pub type VPNRange = SimpleRange<VirtPageNum>;

@ -1,15 +1,20 @@
//! Implementation of [`FrameAllocator`] which
//! controls all the frames in the operating system.
use super::{PhysAddr, PhysPageNum};
use alloc::vec::Vec;
use spin::Mutex;
use crate::config::MEMORY_END;
use lazy_static::*;
use crate::sync::UPSafeCell;
use alloc::vec::Vec;
use core::fmt::{self, Debug, Formatter};
use lazy_static::*;
/// manage a frame which has the same lifecycle as the tracker
pub struct FrameTracker {
///
pub ppn: PhysPageNum,
}
impl FrameTracker {
///Create an empty `FrameTracker`
pub fn new(ppn: PhysPageNum) -> Self {
// page cleaning
let bytes_array = ppn.get_bytes_array();
@ -37,7 +42,7 @@ trait FrameAllocator {
fn alloc(&mut self) -> Option<PhysPageNum>;
fn dealloc(&mut self, ppn: PhysPageNum);
}
/// an implementation for frame allocator
pub struct StackFrameAllocator {
current: usize,
end: usize,
@ -62,22 +67,17 @@ impl FrameAllocator for StackFrameAllocator {
fn alloc(&mut self) -> Option<PhysPageNum> {
if let Some(ppn) = self.recycled.pop() {
Some(ppn.into())
} else if self.current == self.end {
None
} else {
if self.current == self.end {
None
} else {
self.current += 1;
Some((self.current - 1).into())
}
self.current += 1;
Some((self.current - 1).into())
}
}
fn dealloc(&mut self, ppn: PhysPageNum) {
let ppn = ppn.0;
// validity check
if ppn >= self.current || self.recycled
.iter()
.find(|&v| {*v == ppn})
.is_some() {
if ppn >= self.current || self.recycled.iter().any(|&v| v == ppn) {
panic!("Frame ppn={:#x} has not been allocated!", ppn);
}
// recycle
@ -88,33 +88,34 @@ impl FrameAllocator for StackFrameAllocator {
type FrameAllocatorImpl = StackFrameAllocator;
lazy_static! {
pub static ref FRAME_ALLOCATOR: Mutex<FrameAllocatorImpl> =
Mutex::new(FrameAllocatorImpl::new());
/// frame allocator instance through lazy_static!
pub static ref FRAME_ALLOCATOR: UPSafeCell<FrameAllocatorImpl> =
unsafe { UPSafeCell::new(FrameAllocatorImpl::new()) };
}
/// initiate the frame allocator using `ekernel` and `MEMORY_END`
pub fn init_frame_allocator() {
extern "C" {
fn ekernel();
}
FRAME_ALLOCATOR
.lock()
.init(PhysAddr::from(ekernel as usize).ceil(), PhysAddr::from(MEMORY_END).floor());
FRAME_ALLOCATOR.exclusive_access().init(
PhysAddr::from(ekernel as usize).ceil(),
PhysAddr::from(MEMORY_END).floor(),
);
}
/// allocate a frame
pub fn frame_alloc() -> Option<FrameTracker> {
FRAME_ALLOCATOR
.lock()
.exclusive_access()
.alloc()
.map(|ppn| FrameTracker::new(ppn))
.map(FrameTracker::new)
}
fn frame_dealloc(ppn: PhysPageNum) {
FRAME_ALLOCATOR
.lock()
.dealloc(ppn);
/// deallocate a frame
pub fn frame_dealloc(ppn: PhysPageNum) {
FRAME_ALLOCATOR.exclusive_access().dealloc(ppn);
}
#[allow(unused)]
/// a simple test for frame allocator
pub fn frame_allocator_test() {
let mut v: Vec<FrameTracker> = Vec::new();
for i in 0..5 {
@ -130,4 +131,4 @@ pub fn frame_allocator_test() {
}
drop(v);
println!("frame_allocator_test passed!");
}
}

@ -1,16 +1,19 @@
use buddy_system_allocator::LockedHeap;
//! The global allocator
use crate::config::KERNEL_HEAP_SIZE;
use buddy_system_allocator::LockedHeap;
#[global_allocator]
/// heap allocator instance
static HEAP_ALLOCATOR: LockedHeap = LockedHeap::empty();
#[alloc_error_handler]
/// panic when heap allocation error occurs
pub fn handle_alloc_error(layout: core::alloc::Layout) -> ! {
panic!("Heap allocation error, layout = {:?}", layout);
}
/// heap space ([u8; KERNEL_HEAP_SIZE])
static mut HEAP_SPACE: [u8; KERNEL_HEAP_SIZE] = [0; KERNEL_HEAP_SIZE];
/// initiate heap allocator
pub fn init_heap() {
unsafe {
HEAP_ALLOCATOR
@ -36,8 +39,8 @@ pub fn heap_test() {
for i in 0..500 {
v.push(i);
}
for i in 0..500 {
assert_eq!(v[i], i);
for (i, val) in v.iter().take(500).enumerate() {
assert_eq!(*val, i);
}
assert!(bss_range.contains(&(v.as_ptr() as usize)));
drop(v);

@ -1,20 +1,16 @@
use super::{PageTable, PageTableEntry, PTEFlags};
use super::{VirtPageNum, VirtAddr, PhysPageNum, PhysAddr};
use super::{FrameTracker, frame_alloc};
use super::{VPNRange, StepByOne};
//! Implementation of [`MapArea`] and [`MemorySet`].
use super::{frame_alloc, FrameTracker};
use super::{PTEFlags, PageTable, PageTableEntry};
use super::{PhysAddr, PhysPageNum, VirtAddr, VirtPageNum};
use super::{StepByOne, VPNRange};
use crate::config::{MEMORY_END, MMIO, PAGE_SIZE, TRAMPOLINE, TRAP_CONTEXT, USER_STACK_SIZE};
use crate::sync::UPSafeCell;
use alloc::collections::BTreeMap;
use alloc::vec::Vec;
use riscv::register::satp;
use alloc::sync::Arc;
use alloc::vec::Vec;
use core::arch::asm;
use lazy_static::*;
use spin::Mutex;
use crate::config::{
MEMORY_END,
PAGE_SIZE,
TRAMPOLINE,
TRAP_CONTEXT,
USER_STACK_SIZE
};
use riscv::register::satp;
extern "C" {
fn stext();
@ -30,38 +26,52 @@ extern "C" {
}
lazy_static! {
pub static ref KERNEL_SPACE: Arc<Mutex<MemorySet>> = Arc::new(Mutex::new(
MemorySet::new_kernel()
));
/// a memory set instance through lazy_static! managing kernel space
pub static ref KERNEL_SPACE: Arc<UPSafeCell<MemorySet>> =
Arc::new(unsafe { UPSafeCell::new(MemorySet::new_kernel()) });
}
///Get kernelspace root ppn
pub fn kernel_token() -> usize {
KERNEL_SPACE.exclusive_access().token()
}
/// memory set structure, controls virtual-memory space
pub struct MemorySet {
page_table: PageTable,
areas: Vec<MapArea>,
}
impl MemorySet {
///Create an empty `MemorySet`
pub fn new_bare() -> Self {
Self {
page_table: PageTable::new(),
areas: Vec::new(),
}
}
///Get pagetable `root_ppn`
pub fn token(&self) -> usize {
self.page_table.token()
}
/// Assume that no conflicts.
pub fn insert_framed_area(&mut self, start_va: VirtAddr, end_va: VirtAddr, permission: MapPermission) {
self.push(MapArea::new(
start_va,
end_va,
MapType::Framed,
permission,
), None);
pub fn insert_framed_area(
&mut self,
start_va: VirtAddr,
end_va: VirtAddr,
permission: MapPermission,
) {
self.push(
MapArea::new(start_va, end_va, MapType::Framed, permission),
None,
);
}
///Remove `MapArea` that starts with `start_vpn`
pub fn remove_area_with_start_vpn(&mut self, start_vpn: VirtPageNum) {
if let Some((idx, area)) = self.areas.iter_mut().enumerate()
.find(|(_, area)| area.vpn_range.get_start() == start_vpn) {
if let Some((idx, area)) = self
.areas
.iter_mut()
.enumerate()
.find(|(_, area)| area.vpn_range.get_start() == start_vpn)
{
area.unmap(&mut self.page_table);
self.areas.remove(idx);
}
@ -90,42 +100,72 @@ impl MemorySet {
println!(".text [{:#x}, {:#x})", stext as usize, etext as usize);
println!(".rodata [{:#x}, {:#x})", srodata as usize, erodata as usize);
println!(".data [{:#x}, {:#x})", sdata as usize, edata as usize);
println!(".bss [{:#x}, {:#x})", sbss_with_stack as usize, ebss as usize);
println!(
".bss [{:#x}, {:#x})",
sbss_with_stack as usize, ebss as usize
);
println!("mapping .text section");
memory_set.push(MapArea::new(
(stext as usize).into(),
(etext as usize).into(),
MapType::Identical,
MapPermission::R | MapPermission::X,
), None);
memory_set.push(
MapArea::new(
(stext as usize).into(),
(etext as usize).into(),
MapType::Identical,
MapPermission::R | MapPermission::X,
),
None,
);
println!("mapping .rodata section");
memory_set.push(MapArea::new(
(srodata as usize).into(),
(erodata as usize).into(),
MapType::Identical,
MapPermission::R,
), None);
memory_set.push(
MapArea::new(
(srodata as usize).into(),
(erodata as usize).into(),
MapType::Identical,
MapPermission::R,
),
None,
);
println!("mapping .data section");
memory_set.push(MapArea::new(
(sdata as usize).into(),
(edata as usize).into(),
MapType::Identical,
MapPermission::R | MapPermission::W,
), None);
memory_set.push(
MapArea::new(
(sdata as usize).into(),
(edata as usize).into(),
MapType::Identical,
MapPermission::R | MapPermission::W,
),
None,
);
println!("mapping .bss section");
memory_set.push(MapArea::new(
(sbss_with_stack as usize).into(),
(ebss as usize).into(),
MapType::Identical,
MapPermission::R | MapPermission::W,
), None);
memory_set.push(
MapArea::new(
(sbss_with_stack as usize).into(),
(ebss as usize).into(),
MapType::Identical,
MapPermission::R | MapPermission::W,
),
None,
);
println!("mapping physical memory");
memory_set.push(MapArea::new(
(ekernel as usize).into(),
MEMORY_END.into(),
MapType::Identical,
MapPermission::R | MapPermission::W,
), None);
memory_set.push(
MapArea::new(
(ekernel as usize).into(),
MEMORY_END.into(),
MapType::Identical,
MapPermission::R | MapPermission::W,
),
None,
);
println!("mapping memory-mapped registers");
for pair in MMIO {
memory_set.push(
MapArea::new(
(*pair).0.into(),
((*pair).0 + (*pair).1).into(),
MapType::Identical,
MapPermission::R | MapPermission::W,
),
None,
);
}
memory_set
}
/// Include sections in elf and trampoline and TrapContext and user stack,
@ -148,19 +188,20 @@ impl MemorySet {
let end_va: VirtAddr = ((ph.virtual_addr() + ph.mem_size()) as usize).into();
let mut map_perm = MapPermission::U;
let ph_flags = ph.flags();
if ph_flags.is_read() { map_perm |= MapPermission::R; }
if ph_flags.is_write() { map_perm |= MapPermission::W; }
if ph_flags.is_execute() { map_perm |= MapPermission::X; }
let map_area = MapArea::new(
start_va,
end_va,
MapType::Framed,
map_perm,
);
if ph_flags.is_read() {
map_perm |= MapPermission::R;
}
if ph_flags.is_write() {
map_perm |= MapPermission::W;
}
if ph_flags.is_execute() {
map_perm |= MapPermission::X;
}
let map_area = MapArea::new(start_va, end_va, MapType::Framed, map_perm);
max_end_vpn = map_area.vpn_range.get_end();
memory_set.push(
map_area,
Some(&elf.input[ph.offset() as usize..(ph.offset() + ph.file_size()) as usize])
Some(&elf.input[ph.offset() as usize..(ph.offset() + ph.file_size()) as usize]),
);
}
}
@ -170,21 +211,32 @@ impl MemorySet {
// guard page
user_stack_bottom += PAGE_SIZE;
let user_stack_top = user_stack_bottom + USER_STACK_SIZE;
memory_set.push(MapArea::new(
user_stack_bottom.into(),
user_stack_top.into(),
MapType::Framed,
MapPermission::R | MapPermission::W | MapPermission::U,
), None);
memory_set.push(
MapArea::new(
user_stack_bottom.into(),
user_stack_top.into(),
MapType::Framed,
MapPermission::R | MapPermission::W | MapPermission::U,
),
None,
);
// map TrapContext
memory_set.push(MapArea::new(
TRAP_CONTEXT.into(),
TRAMPOLINE.into(),
MapType::Framed,
MapPermission::R | MapPermission::W,
), None);
(memory_set, user_stack_top, elf.header.pt2.entry_point() as usize)
memory_set.push(
MapArea::new(
TRAP_CONTEXT.into(),
TRAMPOLINE.into(),
MapType::Framed,
MapPermission::R | MapPermission::W,
),
None,
);
(
memory_set,
user_stack_top,
elf.header.pt2.entry_point() as usize,
)
}
///Clone a same `MemorySet`
pub fn from_existed_user(user_space: &MemorySet) -> MemorySet {
let mut memory_set = Self::new_bare();
// map trampoline
@ -197,27 +249,32 @@ impl MemorySet {
for vpn in area.vpn_range {
let src_ppn = user_space.translate(vpn).unwrap().ppn();
let dst_ppn = memory_set.translate(vpn).unwrap().ppn();
dst_ppn.get_bytes_array().copy_from_slice(src_ppn.get_bytes_array());
dst_ppn
.get_bytes_array()
.copy_from_slice(src_ppn.get_bytes_array());
}
}
memory_set
}
///Refresh TLB with `sfence.vma`
pub fn activate(&self) {
let satp = self.page_table.token();
unsafe {
satp::write(satp);
llvm_asm!("sfence.vma" :::: "volatile");
asm!("sfence.vma");
}
}
///Translate throuth pagetable
pub fn translate(&self, vpn: VirtPageNum) -> Option<PageTableEntry> {
self.page_table.translate(vpn)
}
///Remove all `MapArea`
pub fn recycle_data_pages(&mut self) {
//*self = Self::new_bare();
self.areas.clear();
}
}
/// map area structure, controls a contiguous piece of virtual memory
pub struct MapArea {
vpn_range: VPNRange,
data_frames: BTreeMap<VirtPageNum, FrameTracker>,
@ -230,7 +287,7 @@ impl MapArea {
start_va: VirtAddr,
end_va: VirtAddr,
map_type: MapType,
map_perm: MapPermission
map_perm: MapPermission,
) -> Self {
let start_vpn: VirtPageNum = start_va.floor();
let end_vpn: VirtPageNum = end_va.ceil();
@ -265,11 +322,8 @@ impl MapArea {
page_table.map(vpn, ppn, pte_flags);
}
pub fn unmap_one(&mut self, page_table: &mut PageTable, vpn: VirtPageNum) {
match self.map_type {
MapType::Framed => {
self.data_frames.remove(&vpn);
}
_ => {}
if self.map_type == MapType::Framed {
self.data_frames.remove(&vpn);
}
page_table.unmap(vpn);
}
@ -308,37 +362,47 @@ impl MapArea {
}
#[derive(Copy, Clone, PartialEq, Debug)]
/// map type for memory set: identical or framed
pub enum MapType {
Identical,
Framed,
}
bitflags! {
/// map permission corresponding to that in pte: `R W X U`
pub struct MapPermission: u8 {
///Readable
const R = 1 << 1;
///Writable
const W = 1 << 2;
///Excutable
const X = 1 << 3;
///Accessible in U mode
const U = 1 << 4;
}
}
#[allow(unused)]
///Check PageTable running correctly
pub fn remap_test() {
let mut kernel_space = KERNEL_SPACE.lock();
let mut kernel_space = KERNEL_SPACE.exclusive_access();
let mid_text: VirtAddr = ((stext as usize + etext as usize) / 2).into();
let mid_rodata: VirtAddr = ((srodata as usize + erodata as usize) / 2).into();
let mid_data: VirtAddr = ((sdata as usize + edata as usize) / 2).into();
assert_eq!(
kernel_space.page_table.translate(mid_text.floor()).unwrap().writable(),
false
);
assert_eq!(
kernel_space.page_table.translate(mid_rodata.floor()).unwrap().writable(),
false,
);
assert_eq!(
kernel_space.page_table.translate(mid_data.floor()).unwrap().executable(),
false,
);
assert!(!kernel_space
.page_table
.translate(mid_text.floor())
.unwrap()
.writable(),);
assert!(!kernel_space
.page_table
.translate(mid_rodata.floor())
.unwrap()
.writable(),);
assert!(!kernel_space
.page_table
.translate(mid_data.floor())
.unwrap()
.executable(),);
println!("remap_test passed!");
}
}

@ -1,26 +1,29 @@
mod heap_allocator;
//! Memory management implementation
//!
//! SV39 page-based virtual-memory architecture for RV64 systems, and
//! everything about memory management, like frame allocator, page table,
//! map area and memory set, is implemented here.
//!
//! Every task or process has a memory_set to control its virtual memory.
mod address;
mod frame_allocator;
mod page_table;
mod heap_allocator;
mod memory_set;
mod page_table;
use page_table::{PageTable, PTEFlags};
use address::{VPNRange, StepByOne};
pub use address::{PhysAddr, VirtAddr, PhysPageNum, VirtPageNum};
pub use frame_allocator::{FrameTracker, frame_alloc};
use address::VPNRange;
pub use address::{PhysAddr, PhysPageNum, StepByOne, VirtAddr, VirtPageNum};
pub use frame_allocator::{frame_alloc, frame_dealloc, FrameTracker};
pub use memory_set::remap_test;
pub use memory_set::{kernel_token, MapPermission, MemorySet, KERNEL_SPACE};
use page_table::PTEFlags;
pub use page_table::{
PageTableEntry,
translated_byte_buffer,
translated_str,
translated_refmut,
UserBuffer,
UserBufferIterator,
translated_byte_buffer, translated_ref, translated_refmut, translated_str, PageTable,
PageTableEntry, UserBuffer, UserBufferIterator,
};
pub use memory_set::{MemorySet, KERNEL_SPACE, MapPermission};
pub use memory_set::remap_test;
/// initiate heap allocator, frame allocator and kernel space
pub fn init() {
heap_allocator::init_heap();
frame_allocator::init_frame_allocator();
KERNEL_SPACE.clone().lock().activate();
KERNEL_SPACE.exclusive_access().activate();
}

@ -1,15 +1,8 @@
use super::{
frame_alloc,
PhysPageNum,
FrameTracker,
VirtPageNum,
VirtAddr,
PhysAddr,
StepByOne
};
use alloc::vec::Vec;
use alloc::vec;
//! Implementation of [`PageTableEntry`] and [`PageTable`].
use super::{frame_alloc, FrameTracker, PhysAddr, PhysPageNum, StepByOne, VirtAddr, VirtPageNum};
use alloc::string::String;
use alloc::vec;
use alloc::vec::Vec;
use bitflags::*;
bitflags! {
@ -27,41 +20,49 @@ bitflags! {
#[derive(Copy, Clone)]
#[repr(C)]
/// page table entry structure
pub struct PageTableEntry {
///PTE
pub bits: usize,
}
impl PageTableEntry {
///Create a PTE from ppn
pub fn new(ppn: PhysPageNum, flags: PTEFlags) -> Self {
PageTableEntry {
bits: ppn.0 << 10 | flags.bits as usize,
}
}
///Return an empty PTE
pub fn empty() -> Self {
PageTableEntry {
bits: 0,
}
PageTableEntry { bits: 0 }
}
///Return 44bit ppn
pub fn ppn(&self) -> PhysPageNum {
(self.bits >> 10 & ((1usize << 44) - 1)).into()
}
///Return 10bit flag
pub fn flags(&self) -> PTEFlags {
PTEFlags::from_bits(self.bits as u8).unwrap()
}
///Check PTE valid
pub fn is_valid(&self) -> bool {
(self.flags() & PTEFlags::V) != PTEFlags::empty()
}
///Check PTE readable
pub fn readable(&self) -> bool {
(self.flags() & PTEFlags::R) != PTEFlags::empty()
}
///Check PTE writable
pub fn writable(&self) -> bool {
(self.flags() & PTEFlags::W) != PTEFlags::empty()
}
///Check PTE executable
pub fn executable(&self) -> bool {
(self.flags() & PTEFlags::X) != PTEFlags::empty()
}
}
///Record root ppn and has the same lifetime as 1 and 2 level `PageTableEntry`
pub struct PageTable {
root_ppn: PhysPageNum,
frames: Vec<FrameTracker>,
@ -69,6 +70,7 @@ pub struct PageTable {
/// Assume that it won't oom when creating/mapping.
impl PageTable {
/// Create an empty `PageTable`
pub fn new() -> Self {
let frame = frame_alloc().unwrap();
PageTable {
@ -83,12 +85,13 @@ impl PageTable {
frames: Vec::new(),
}
}
/// Find phsical address by virtual address, create a frame if not exist
fn find_pte_create(&mut self, vpn: VirtPageNum) -> Option<&mut PageTableEntry> {
let idxs = vpn.indexes();
let mut ppn = self.root_ppn;
let mut result: Option<&mut PageTableEntry> = None;
for i in 0..3 {
let pte = &mut ppn.get_pte_array()[idxs[i]];
for (i, idx) in idxs.iter().enumerate() {
let pte = &mut ppn.get_pte_array()[*idx];
if i == 2 {
result = Some(pte);
break;
@ -102,12 +105,13 @@ impl PageTable {
}
result
}
fn find_pte(&self, vpn: VirtPageNum) -> Option<&PageTableEntry> {
/// Find phsical address by virtual address
fn find_pte(&self, vpn: VirtPageNum) -> Option<&mut PageTableEntry> {
let idxs = vpn.indexes();
let mut ppn = self.root_ppn;
let mut result: Option<&PageTableEntry> = None;
for i in 0..3 {
let pte = &ppn.get_pte_array()[idxs[i]];
let mut result: Option<&mut PageTableEntry> = None;
for (i, idx) in idxs.iter().enumerate() {
let pte = &mut ppn.get_pte_array()[*idx];
if i == 2 {
result = Some(pte);
break;
@ -120,35 +124,38 @@ impl PageTable {
result
}
#[allow(unused)]
/// Create a mapping form `vpn` to `ppn`
pub fn map(&mut self, vpn: VirtPageNum, ppn: PhysPageNum, flags: PTEFlags) {
let pte = self.find_pte_create(vpn).unwrap();
assert!(!pte.is_valid(), "vpn {:?} is mapped before mapping", vpn);
*pte = PageTableEntry::new(ppn, flags | PTEFlags::V);
}
#[allow(unused)]
/// Delete a mapping form `vpn`
pub fn unmap(&mut self, vpn: VirtPageNum) {
let pte = self.find_pte_create(vpn).unwrap();
let pte = self.find_pte(vpn).unwrap();
assert!(pte.is_valid(), "vpn {:?} is invalid before unmapping", vpn);
*pte = PageTableEntry::empty();
}
/// Translate `VirtPageNum` to `PageTableEntry`
pub fn translate(&self, vpn: VirtPageNum) -> Option<PageTableEntry> {
self.find_pte(vpn)
.map(|pte| {pte.clone()})
self.find_pte(vpn).map(|pte| *pte)
}
/// Translate `VirtAddr` to `PhysAddr`
pub fn translate_va(&self, va: VirtAddr) -> Option<PhysAddr> {
self.find_pte(va.clone().floor())
.map(|pte| {
let aligned_pa: PhysAddr = pte.ppn().into();
let offset = va.page_offset();
let aligned_pa_usize: usize = aligned_pa.into();
(aligned_pa_usize + offset).into()
})
self.find_pte(va.clone().floor()).map(|pte| {
let aligned_pa: PhysAddr = pte.ppn().into();
let offset = va.page_offset();
let aligned_pa_usize: usize = aligned_pa.into();
(aligned_pa_usize + offset).into()
})
}
/// Get root ppn
pub fn token(&self) -> usize {
8usize << 60 | self.root_ppn.0
}
}
/// Translate a pointer to a mutable u8 Vec through page table
pub fn translated_byte_buffer(token: usize, ptr: *const u8, len: usize) -> Vec<&'static mut [u8]> {
let page_table = PageTable::from_token(token);
let mut start = ptr as usize;
@ -157,10 +164,7 @@ pub fn translated_byte_buffer(token: usize, ptr: *const u8, len: usize) -> Vec<&
while start < end {
let start_va = VirtAddr::from(start);
let mut vpn = start_va.floor();
let ppn = page_table
.translate(vpn)
.unwrap()
.ppn();
let ppn = page_table.translate(vpn).unwrap().ppn();
vpn.step();
let mut end_va: VirtAddr = vpn.into();
end_va = end_va.min(VirtAddr::from(end));
@ -174,36 +178,55 @@ pub fn translated_byte_buffer(token: usize, ptr: *const u8, len: usize) -> Vec<&
v
}
/// Translate a pointer to a mutable u8 Vec end with `\0` through page table to a `String`
pub fn translated_str(token: usize, ptr: *const u8) -> String {
let page_table = PageTable::from_token(token);
let mut string = String::new();
let mut va = ptr as usize;
loop {
let ch: u8 = *(page_table.translate_va(VirtAddr::from(va)).unwrap().get_mut());
let ch: u8 = *(page_table
.translate_va(VirtAddr::from(va))
.unwrap()
.get_mut());
if ch == 0 {
break;
} else {
string.push(ch as char);
va += 1;
}
string.push(ch as char);
va += 1;
}
string
}
#[allow(unused)]
///Translate a generic through page table and return a reference
pub fn translated_ref<T>(token: usize, ptr: *const T) -> &'static T {
let page_table = PageTable::from_token(token);
page_table
.translate_va(VirtAddr::from(ptr as usize))
.unwrap()
.get_ref()
}
///Translate a generic through page table and return a mutable reference
pub fn translated_refmut<T>(token: usize, ptr: *mut T) -> &'static mut T {
let page_table = PageTable::from_token(token);
let va = ptr as usize;
page_table.translate_va(VirtAddr::from(va)).unwrap().get_mut()
page_table
.translate_va(VirtAddr::from(va))
.unwrap()
.get_mut()
}
///Array of u8 slice that user communicate with os
pub struct UserBuffer {
///U8 vec
pub buffers: Vec<&'static mut [u8]>,
}
impl UserBuffer {
///Create a `UserBuffer` by parameter
pub fn new(buffers: Vec<&'static mut [u8]>) -> Self {
Self { buffers }
}
///Length of `UserBuffer`
pub fn len(&self) -> usize {
let mut total: usize = 0;
for b in self.buffers.iter() {
@ -224,7 +247,7 @@ impl IntoIterator for UserBuffer {
}
}
}
/// Iterator of `UserBuffer`
pub struct UserBufferIterator {
buffers: Vec<&'static mut [u8]>,
current_buffer: usize,
@ -247,4 +270,4 @@ impl Iterator for UserBufferIterator {
Some(r)
}
}
}
}

@ -1,5 +1,8 @@
//! SBI call wrappers
#![allow(unused)]
use core::arch::asm;
const SBI_SET_TIMER: usize = 0;
const SBI_CONSOLE_PUTCHAR: usize = 1;
const SBI_CONSOLE_GETCHAR: usize = 2;
@ -9,35 +12,35 @@ const SBI_REMOTE_FENCE_I: usize = 5;
const SBI_REMOTE_SFENCE_VMA: usize = 6;
const SBI_REMOTE_SFENCE_VMA_ASID: usize = 7;
const SBI_SHUTDOWN: usize = 8;
/// general sbi call
#[inline(always)]
fn sbi_call(which: usize, arg0: usize, arg1: usize, arg2: usize) -> usize {
let mut ret;
unsafe {
llvm_asm!("ecall"
: "={x10}" (ret)
: "{x10}" (arg0), "{x11}" (arg1), "{x12}" (arg2), "{x17}" (which)
: "memory"
: "volatile"
asm!(
"ecall",
inlateout("x10") arg0 => ret,
in("x11") arg1,
in("x12") arg2,
in("x17") which,
);
}
ret
}
/// use sbi call to set timer
pub fn set_timer(timer: usize) {
sbi_call(SBI_SET_TIMER, timer, 0, 0);
}
/// use sbi call to putchar in console (qemu uart handler)
pub fn console_putchar(c: usize) {
sbi_call(SBI_CONSOLE_PUTCHAR, c, 0, 0);
}
/// use sbi call to getchar from console (qemu uart handler)
pub fn console_getchar() -> usize {
sbi_call(SBI_CONSOLE_GETCHAR, 0, 0, 0)
}
/// use sbi call to shutdown the kernel
pub fn shutdown() -> ! {
sbi_call(SBI_SHUTDOWN, 0, 0, 0);
panic!("It should shutdown!");
}

@ -0,0 +1,4 @@
//! Synchronization and interior mutability primitives
mod up;
pub use up::UPSafeCell;

@ -0,0 +1,30 @@
//! Uniprocessor interior mutability primitives
use core::cell::{RefCell, RefMut};
/// Wrap a static data structure inside it so that we are
/// able to access it without any `unsafe`.
///
/// We should only use it in uniprocessor.
///
/// In order to get mutable reference of inner data, call
/// `exclusive_access`.
pub struct UPSafeCell<T> {
/// inner data
inner: RefCell<T>,
}
unsafe impl<T> Sync for UPSafeCell<T> {}
impl<T> UPSafeCell<T> {
/// User is responsible to guarantee that inner struct is only used in
/// uniprocessor.
pub unsafe fn new(value: T) -> Self {
Self {
inner: RefCell::new(value),
}
}
/// Exclusive access inner data in UPSafeCell. Panic if the data has been borrowed.
pub fn exclusive_access(&self) -> RefMut<'_, T> {
self.inner.borrow_mut()
}
}

@ -1,21 +1,23 @@
use crate::mm::{UserBuffer, translated_byte_buffer, translated_refmut};
use crate::task::{current_user_token, current_task};
use crate::fs::{make_pipe};
//! File and filesystem-related syscalls
use crate::fs::{open_file, OpenFlags};
use crate::mm::{translated_byte_buffer, translated_str, UserBuffer};
use crate::task::{current_task, current_user_token};
pub fn sys_write(fd: usize, buf: *const u8, len: usize) -> isize {
let token = current_user_token();
let task = current_task().unwrap();
let inner = task.acquire_inner_lock();
let inner = task.inner_exclusive_access();
if fd >= inner.fd_table.len() {
return -1;
}
if let Some(file) = &inner.fd_table[fd] {
if !file.writable() {
return -1;
}
let file = file.clone();
// release Task lock manually to avoid deadlock
// release current task TCB manually to avoid multi-borrow
drop(inner);
file.write(
UserBuffer::new(translated_byte_buffer(token, buf, len))
) as isize
file.write(UserBuffer::new(translated_byte_buffer(token, buf, len))) as isize
} else {
-1
}
@ -24,17 +26,32 @@ pub fn sys_write(fd: usize, buf: *const u8, len: usize) -> isize {
pub fn sys_read(fd: usize, buf: *const u8, len: usize) -> isize {
let token = current_user_token();
let task = current_task().unwrap();
let inner = task.acquire_inner_lock();
let inner = task.inner_exclusive_access();
if fd >= inner.fd_table.len() {
return -1;
}
if let Some(file) = &inner.fd_table[fd] {
let file = file.clone();
// release Task lock manually to avoid deadlock
if !file.readable() {
return -1;
}
// release current task TCB manually to avoid multi-borrow
drop(inner);
file.read(
UserBuffer::new(translated_byte_buffer(token, buf, len))
) as isize
file.read(UserBuffer::new(translated_byte_buffer(token, buf, len))) as isize
} else {
-1
}
}
pub fn sys_open(path: *const u8, flags: u32) -> isize {
let task = current_task().unwrap();
let token = current_user_token();
let path = translated_str(token, path);
if let Some(inode) = open_file(path.as_str(), OpenFlags::from_bits(flags).unwrap()) {
let mut inner = task.inner_exclusive_access();
let fd = inner.alloc_fd();
inner.fd_table[fd] = Some(inode);
fd as isize
} else {
-1
}
@ -42,7 +59,7 @@ pub fn sys_read(fd: usize, buf: *const u8, len: usize) -> isize {
pub fn sys_close(fd: usize) -> isize {
let task = current_task().unwrap();
let mut inner = task.acquire_inner_lock();
let mut inner = task.inner_exclusive_access();
if fd >= inner.fd_table.len() {
return -1;
}
@ -52,17 +69,3 @@ pub fn sys_close(fd: usize) -> isize {
inner.fd_table[fd].take();
0
}
pub fn sys_pipe(pipe: *mut usize) -> isize {
let task = current_task().unwrap();
let token = current_user_token();
let mut inner = task.acquire_inner_lock();
let (pipe_read, pipe_write) = make_pipe();
let read_fd = inner.alloc_fd();
inner.fd_table[read_fd] = Some(pipe_read);
let write_fd = inner.alloc_fd();
inner.fd_table[write_fd] = Some(pipe_write);
*translated_refmut(token, pipe) = read_fd;
*translated_refmut(token, unsafe { pipe.add(1) }) = write_fd;
0
}

@ -1,5 +1,16 @@
//! Implementation of syscalls
//!
//! The single entry point to all system calls, [`syscall()`], is called
//! whenever userspace wishes to perform a system call using the `ecall`
//! instruction. In this case, the processor raises an 'Environment call from
//! U-mode' exception, which is handled as one of the cases in
//! [`crate::trap::trap_handler`].
//!
//! For clarity, each single syscall is implemented as its own function, named
//! `sys_` then the name of the syscall. You can find functions like this in
//! submodules, and you should also implement syscalls this way.
const SYSCALL_OPEN: usize = 56;
const SYSCALL_CLOSE: usize = 57;
const SYSCALL_PIPE: usize = 59;
const SYSCALL_READ: usize = 63;
const SYSCALL_WRITE: usize = 64;
const SYSCALL_EXIT: usize = 93;
@ -15,11 +26,11 @@ mod process;
use fs::*;
use process::*;
/// handle syscall exception with `syscall_id` and other arguments
pub fn syscall(syscall_id: usize, args: [usize; 3]) -> isize {
match syscall_id {
SYSCALL_OPEN => sys_open(args[0] as *const u8, args[1] as u32),
SYSCALL_CLOSE => sys_close(args[0]),
SYSCALL_PIPE => sys_pipe(args[0] as *mut usize),
SYSCALL_READ => sys_read(args[0], args[1] as *const u8, args[2]),
SYSCALL_WRITE => sys_write(args[0], args[1] as *const u8, args[2]),
SYSCALL_EXIT => sys_exit(args[0] as i32),
@ -32,4 +43,3 @@ pub fn syscall(syscall_id: usize, args: [usize; 3]) -> isize {
_ => panic!("Unsupported syscall_id: {}", syscall_id),
}
}

@ -1,16 +1,10 @@
use crate::fs::{open_file, OpenFlags};
use crate::mm::{translated_refmut, translated_str};
use crate::task::{
add_task, current_task, current_user_token, exit_current_and_run_next,
suspend_current_and_run_next,
exit_current_and_run_next,
current_task,
current_user_token,
add_task,
};
use crate::timer::get_time_ms;
use crate::mm::{
translated_str,
translated_refmut,
};
use crate::loader::get_app_data_by_name;
use alloc::sync::Arc;
pub fn sys_exit(exit_code: i32) -> ! {
@ -36,7 +30,7 @@ pub fn sys_fork() -> isize {
let new_task = current_task.fork();
let new_pid = new_task.pid.0;
// modify trap context of new_task, because it returns immediately after switching
let trap_cx = new_task.acquire_inner_lock().get_trap_cx();
let trap_cx = new_task.inner_exclusive_access().get_trap_cx();
// we do not have to move to next instruction since we have done it before
// for child process, fork returns 0
trap_cx.x[10] = 0;
@ -48,9 +42,10 @@ pub fn sys_fork() -> isize {
pub fn sys_exec(path: *const u8) -> isize {
let token = current_user_token();
let path = translated_str(token, path);
if let Some(data) = get_app_data_by_name(path.as_str()) {
if let Some(app_inode) = open_file(path.as_str(), OpenFlags::RDONLY) {
let all_data = app_inode.read_all();
let task = current_task().unwrap();
task.exec(data);
task.exec(all_data.as_slice());
0
} else {
-1
@ -63,35 +58,33 @@ pub fn sys_waitpid(pid: isize, exit_code_ptr: *mut i32) -> isize {
let task = current_task().unwrap();
// find a child process
// ---- hold current PCB lock
let mut inner = task.acquire_inner_lock();
if inner.children
// ---- access current PCB exclusively
let mut inner = task.inner_exclusive_access();
if !inner
.children
.iter()
.find(|p| {pid == -1 || pid as usize == p.getpid()})
.is_none() {
.any(|p| pid == -1 || pid as usize == p.getpid())
{
return -1;
// ---- release current PCB lock
// ---- release current PCB
}
let pair = inner.children
.iter()
.enumerate()
.find(|(_, p)| {
// ++++ temporarily hold child PCB lock
p.acquire_inner_lock().is_zombie() && (pid == -1 || pid as usize == p.getpid())
// ++++ release child PCB lock
});
let pair = inner.children.iter().enumerate().find(|(_, p)| {
// ++++ temporarily access child PCB exclusively
p.inner_exclusive_access().is_zombie() && (pid == -1 || pid as usize == p.getpid())
// ++++ release child PCB
});
if let Some((idx, _)) = pair {
let child = inner.children.remove(idx);
// confirm that child will be deallocated after removing from children list
// confirm that child will be deallocated after being removed from children list
assert_eq!(Arc::strong_count(&child), 1);
let found_pid = child.getpid();
// ++++ temporarily hold child lock
let exit_code = child.acquire_inner_lock().exit_code;
// ++++ release child PCB lock
// ++++ temporarily access child PCB exclusively
let exit_code = child.inner_exclusive_access().exit_code;
// ++++ release child PCB
*translated_refmut(inner.memory_set.token(), exit_code_ptr) = exit_code;
found_pid as isize
} else {
-2
}
// ---- release current PCB lock automatically
}
// ---- release current PCB automatically
}

@ -1,17 +1,32 @@
//! Implementation of [`TaskContext`]
use crate::trap::trap_return;
#[repr(C)]
/// task context structure containing some registers
pub struct TaskContext {
/// return address ( e.g. __restore ) of __switch ASM function
ra: usize,
/// kernel stack pointer of app
sp: usize,
/// s0-11 register, callee saved
s: [usize; 12],
}
impl TaskContext {
pub fn goto_trap_return() -> Self {
/// init task context
pub fn zero_init() -> Self {
Self {
ra: 0,
sp: 0,
s: [0; 12],
}
}
/// set Task Context{__restore ASM funciton: trap_return, sp: kstack_ptr, s: s_0..12}
pub fn goto_trap_return(kstack_ptr: usize) -> Self {
Self {
ra: trap_return as usize,
sp: kstack_ptr,
s: [0; 12],
}
}
}

@ -1,34 +1,41 @@
//!Implementation of [`TaskManager`]
use super::TaskControlBlock;
use crate::sync::UPSafeCell;
use alloc::collections::VecDeque;
use alloc::sync::Arc;
use spin::Mutex;
use lazy_static::*;
///A array of `TaskControlBlock` that is thread-safe
pub struct TaskManager {
ready_queue: VecDeque<Arc<TaskControlBlock>>,
}
/// A simple FIFO scheduler.
impl TaskManager {
///Creat an empty TaskManager
pub fn new() -> Self {
Self { ready_queue: VecDeque::new(), }
Self {
ready_queue: VecDeque::new(),
}
}
///Add a task to `TaskManager`
pub fn add(&mut self, task: Arc<TaskControlBlock>) {
self.ready_queue.push_back(task);
}
///Remove the first task and return it,or `None` if `TaskManager` is empty
pub fn fetch(&mut self) -> Option<Arc<TaskControlBlock>> {
self.ready_queue.pop_front()
}
}
lazy_static! {
pub static ref TASK_MANAGER: Mutex<TaskManager> = Mutex::new(TaskManager::new());
pub static ref TASK_MANAGER: UPSafeCell<TaskManager> =
unsafe { UPSafeCell::new(TaskManager::new()) };
}
///Interface offered to add task
pub fn add_task(task: Arc<TaskControlBlock>) {
TASK_MANAGER.lock().add(task);
TASK_MANAGER.exclusive_access().add(task);
}
///Interface offered to pop the first task
pub fn fetch_task() -> Option<Arc<TaskControlBlock>> {
TASK_MANAGER.lock().fetch()
}
TASK_MANAGER.exclusive_access().fetch()
}

@ -1,86 +1,103 @@
//! Task management implementation
//!
//! Everything about task management, like starting and switching tasks is
//! implemented here.
//!
//! A single global instance of [`TaskManager`] called `TASK_MANAGER` controls
//! all the tasks in the whole operating system.
//!
//! A single global instance of [`Processor`] called `PROCESSOR` monitors running
//! task(s) for each core.
//!
//! A single global instance of [`PidAllocator`] called `PID_ALLOCATOR` allocates
//! pid for user apps.
//!
//! Be careful when you see `__switch` ASM function in `switch.S`. Control flow around this function
//! might not be what you expect.
mod context;
mod switch;
mod task;
mod manager;
mod processor;
mod pid;
mod processor;
mod switch;
#[allow(clippy::module_inception)]
#[allow(rustdoc::private_intra_doc_links)]
mod task;
use crate::loader::{get_app_data_by_name};
use switch::__switch;
use task::{TaskControlBlock, TaskStatus};
use crate::fs::{open_file, OpenFlags};
use alloc::sync::Arc;
use manager::fetch_task;
pub use context::TaskContext;
use lazy_static::*;
pub use manager::{fetch_task, TaskManager};
use switch::__switch;
use task::{TaskControlBlock, TaskStatus};
pub use context::TaskContext;
pub use manager::add_task;
pub use pid::{pid_alloc, KernelStack, PidAllocator, PidHandle};
pub use processor::{
run_tasks,
current_task,
current_user_token,
current_trap_cx,
take_current_task,
schedule,
current_task, current_trap_cx, current_user_token, run_tasks, schedule, take_current_task,
Processor,
};
pub use manager::add_task;
pub use pid::{PidHandle, pid_alloc, KernelStack};
/// Suspend the current 'Running' task and run the next task in task list.
pub fn suspend_current_and_run_next() {
// There must be an application running.
let task = take_current_task().unwrap();
// ---- temporarily hold current PCB lock
let task_cx_ptr = task.acquire_inner_lock().get_task_cx_ptr2();
// ---- release current PCB lock
// ++++ temporarily hold current PCB lock
// ---- access current TCB exclusively
let mut task_inner = task.inner_exclusive_access();
let task_cx_ptr = &mut task_inner.task_cx as *mut TaskContext;
// Change status to Ready
task.acquire_inner_lock().task_status = TaskStatus::Ready;
// ++++ release current PCB lock
task_inner.task_status = TaskStatus::Ready;
drop(task_inner);
// ---- release current PCB
// push back to ready queue.
add_task(task);
// jump to scheduling cycle
schedule(task_cx_ptr);
}
/// Exit the current 'Running' task and run the next task in task list.
pub fn exit_current_and_run_next(exit_code: i32) {
// take from Processor
let task = take_current_task().unwrap();
// **** hold current PCB lock
let mut inner = task.acquire_inner_lock();
// **** access current TCB exclusively
let mut inner = task.inner_exclusive_access();
// Change status to Zombie
inner.task_status = TaskStatus::Zombie;
// Record exit code
inner.exit_code = exit_code;
// do not move to its parent but under initproc
// ++++++ hold initproc PCB lock here
// ++++++ access initproc TCB exclusively
{
let mut initproc_inner = INITPROC.acquire_inner_lock();
let mut initproc_inner = INITPROC.inner_exclusive_access();
for child in inner.children.iter() {
child.inner_exclusive_access().parent = Some(Arc::downgrade(&INITPROC));
initproc_inner.children.push(child.clone());
}
}
// ++++++ release parent PCB lock here
// ++++++ release parent PCB
inner.children.clear();
// deallocate user space
inner.memory_set.recycle_data_pages();
drop(inner);
// **** release current PCB lock
// **** release current PCB
// drop task manually to maintain rc correctly
drop(task);
// we do not have to save task context
let _unused: usize = 0;
schedule(&_unused as *const _);
let mut _unused = TaskContext::zero_init();
schedule(&mut _unused as *mut _);
}
lazy_static! {
pub static ref INITPROC: Arc<TaskControlBlock> = Arc::new(
TaskControlBlock::new(get_app_data_by_name("initproc").unwrap())
);
///Globle process that init user shell
pub static ref INITPROC: Arc<TaskControlBlock> = Arc::new({
let inode = open_file("initproc", OpenFlags::RDONLY).unwrap();
let v = inode.read_all();
TaskControlBlock::new(v.as_slice())
});
}
///Add init process to the manager
pub fn add_initproc() {
add_task(INITPROC.clone());
}

@ -1,25 +1,24 @@
//!Implementation of [`PidAllocator`]
use crate::config::{KERNEL_STACK_SIZE, PAGE_SIZE, TRAMPOLINE};
use crate::mm::{MapPermission, VirtAddr, KERNEL_SPACE};
use crate::sync::UPSafeCell;
use alloc::vec::Vec;
use lazy_static::*;
use spin::Mutex;
use crate::mm::{KERNEL_SPACE, MapPermission, VirtAddr};
use crate::config::{
PAGE_SIZE,
TRAMPOLINE,
KERNEL_STACK_SIZE,
};
struct PidAllocator {
///Pid Allocator struct
pub struct PidAllocator {
current: usize,
recycled: Vec<usize>,
}
impl PidAllocator {
///Create an empty `PidAllocator`
pub fn new() -> Self {
PidAllocator {
current: 0,
recycled: Vec::new(),
}
}
///Allocate a pid
pub fn alloc(&mut self) -> PidHandle {
if let Some(pid) = self.recycled.pop() {
PidHandle(pid)
@ -28,31 +27,34 @@ impl PidAllocator {
PidHandle(self.current - 1)
}
}
///Recycle a pid
pub fn dealloc(&mut self, pid: usize) {
assert!(pid < self.current);
assert!(
self.recycled.iter().find(|ppid| **ppid == pid).is_none(),
"pid {} has been deallocated!", pid
!self.recycled.iter().any(|ppid| *ppid == pid),
"pid {} has been deallocated!",
pid
);
self.recycled.push(pid);
}
}
lazy_static! {
static ref PID_ALLOCATOR : Mutex<PidAllocator> = Mutex::new(PidAllocator::new());
pub static ref PID_ALLOCATOR: UPSafeCell<PidAllocator> =
unsafe { UPSafeCell::new(PidAllocator::new()) };
}
///Bind pid lifetime to `PidHandle`
pub struct PidHandle(pub usize);
impl Drop for PidHandle {
fn drop(&mut self) {
//println!("drop pid {}", self.0);
PID_ALLOCATOR.lock().dealloc(self.0);
PID_ALLOCATOR.exclusive_access().dealloc(self.0);
}
}
///Allocate a pid from PID_ALLOCATOR
pub fn pid_alloc() -> PidHandle {
PID_ALLOCATOR.lock().alloc()
PID_ALLOCATOR.exclusive_access().alloc()
}
/// Return (bottom, top) of a kernel stack in kernel space.
@ -61,33 +63,37 @@ pub fn kernel_stack_position(app_id: usize) -> (usize, usize) {
let bottom = top - KERNEL_STACK_SIZE;
(bottom, top)
}
///Kernelstack for app
pub struct KernelStack {
pid: usize,
}
impl KernelStack {
///Create a kernelstack from pid
pub fn new(pid_handle: &PidHandle) -> Self {
let pid = pid_handle.0;
let (kernel_stack_bottom, kernel_stack_top) = kernel_stack_position(pid);
KERNEL_SPACE
.lock()
.insert_framed_area(
kernel_stack_bottom.into(),
kernel_stack_top.into(),
MapPermission::R | MapPermission::W,
);
KernelStack {
pid: pid_handle.0,
}
KERNEL_SPACE.exclusive_access().insert_framed_area(
kernel_stack_bottom.into(),
kernel_stack_top.into(),
MapPermission::R | MapPermission::W,
);
KernelStack { pid: pid_handle.0 }
}
pub fn push_on_top<T>(&self, value: T) -> *mut T where
T: Sized, {
#[allow(unused)]
///Push a value on top of kernelstack
pub fn push_on_top<T>(&self, value: T) -> *mut T
where
T: Sized,
{
let kernel_stack_top = self.get_top();
let ptr_mut = (kernel_stack_top - core::mem::size_of::<T>()) as *mut T;
unsafe { *ptr_mut = value; }
unsafe {
*ptr_mut = value;
}
ptr_mut
}
///Get the value on the top of kernelstack
pub fn get_top(&self) -> usize {
let (_, kernel_stack_top) = kernel_stack_position(self.pid);
kernel_stack_top
@ -99,7 +105,7 @@ impl Drop for KernelStack {
let (kernel_stack_bottom, _) = kernel_stack_position(self.pid);
let kernel_stack_bottom_va: VirtAddr = kernel_stack_bottom.into();
KERNEL_SPACE
.lock()
.exclusive_access()
.remove_area_with_start_vpn(kernel_stack_bottom_va.into());
}
}
}

@ -1,93 +1,93 @@
use super::TaskControlBlock;
use alloc::sync::Arc;
use spin::Mutex;
use lazy_static::*;
use super::{fetch_task, TaskStatus};
//!Implementation of [`Processor`] and Intersection of control flow
use super::__switch;
use super::{fetch_task, TaskStatus};
use super::{TaskContext, TaskControlBlock};
use crate::sync::UPSafeCell;
use crate::trap::TrapContext;
use alloc::sync::Arc;
use lazy_static::*;
///Processor management structure
pub struct Processor {
inner: Mutex<ProcessorInner>,
}
unsafe impl Sync for Processor {}
struct ProcessorInner {
///The task currently executing on the current processor
current: Option<Arc<TaskControlBlock>>,
idle_task_cx_ptr: usize,
///The basic control flow of each core, helping to select and switch process
idle_task_cx: TaskContext,
}
impl Processor {
///Create an empty Processor
pub fn new() -> Self {
Self {
inner: Mutex::new(ProcessorInner {
current: None,
idle_task_cx_ptr: 0,
}),
current: None,
idle_task_cx: TaskContext::zero_init(),
}
}
fn get_idle_task_cx_ptr2(&self) -> *const usize {
let inner = self.inner.lock();
&inner.idle_task_cx_ptr as *const usize
}
pub fn run(&self) {
loop {
if let Some(task) = fetch_task() {
let idle_task_cx_ptr = self.get_idle_task_cx_ptr2();
// acquire
let next_task_cx_ptr = task.acquire_inner_lock().get_task_cx_ptr2();
task.acquire_inner_lock().task_status = TaskStatus::Running;
// release
self.inner.lock().current = Some(task);
unsafe {
__switch(
idle_task_cx_ptr,
next_task_cx_ptr,
);
}
}
}
///Get mutable reference to `idle_task_cx`
fn get_idle_task_cx_ptr(&mut self) -> *mut TaskContext {
&mut self.idle_task_cx as *mut _
}
pub fn take_current(&self) -> Option<Arc<TaskControlBlock>> {
self.inner.lock().current.take()
///Get current task in moving semanteme
pub fn take_current(&mut self) -> Option<Arc<TaskControlBlock>> {
self.current.take()
}
///Get current task in cloning semanteme
pub fn current(&self) -> Option<Arc<TaskControlBlock>> {
self.inner.lock().current.as_ref().map(|task| task.clone())
self.current.as_ref().map(Arc::clone)
}
}
lazy_static! {
pub static ref PROCESSOR: Processor = Processor::new();
pub static ref PROCESSOR: UPSafeCell<Processor> = unsafe { UPSafeCell::new(Processor::new()) };
}
///The main part of process execution and scheduling
///Loop `fetch_task` to get the process that needs to run, and switch the process through `__switch`
pub fn run_tasks() {
PROCESSOR.run();
loop {
let mut processor = PROCESSOR.exclusive_access();
if let Some(task) = fetch_task() {
let idle_task_cx_ptr = processor.get_idle_task_cx_ptr();
// access coming task TCB exclusively
let mut task_inner = task.inner_exclusive_access();
let next_task_cx_ptr = &task_inner.task_cx as *const TaskContext;
task_inner.task_status = TaskStatus::Running;
drop(task_inner);
// release coming task TCB manually
processor.current = Some(task);
// release processor manually
drop(processor);
unsafe {
__switch(idle_task_cx_ptr, next_task_cx_ptr);
}
}
}
}
///Take the current task,leaving a None in its place
pub fn take_current_task() -> Option<Arc<TaskControlBlock>> {
PROCESSOR.take_current()
PROCESSOR.exclusive_access().take_current()
}
///Get running task
pub fn current_task() -> Option<Arc<TaskControlBlock>> {
PROCESSOR.current()
PROCESSOR.exclusive_access().current()
}
///Get token of the address space of current task
pub fn current_user_token() -> usize {
let task = current_task().unwrap();
let token = task.acquire_inner_lock().get_user_token();
let token = task.inner_exclusive_access().get_user_token();
token
}
///Get the mutable reference to trap context of current task
pub fn current_trap_cx() -> &'static mut TrapContext {
current_task().unwrap().acquire_inner_lock().get_trap_cx()
current_task()
.unwrap()
.inner_exclusive_access()
.get_trap_cx()
}
pub fn schedule(switched_task_cx_ptr2: *const usize) {
let idle_task_cx_ptr2 = PROCESSOR.get_idle_task_cx_ptr2();
///Return to idle control flow for new scheduling
pub fn schedule(switched_task_cx_ptr: *mut TaskContext) {
let mut processor = PROCESSOR.exclusive_access();
let idle_task_cx_ptr = processor.get_idle_task_cx_ptr();
drop(processor);
unsafe {
__switch(
switched_task_cx_ptr2,
idle_task_cx_ptr2,
);
__switch(switched_task_cx_ptr, idle_task_cx_ptr);
}
}

@ -1,34 +1,34 @@
.altmacro
.macro SAVE_SN n
sd s\n, (\n+1)*8(sp)
sd s\n, (\n+2)*8(a0)
.endm
.macro LOAD_SN n
ld s\n, (\n+1)*8(sp)
ld s\n, (\n+2)*8(a1)
.endm
.section .text
.globl __switch
__switch:
# __switch(current_task_cx: &*const TaskContext, next_task_cx: &*const TaskContext)
# push TaskContext to current sp and save its address to where a0 points to
addi sp, sp, -13*8
sd sp, 0(a0)
# fill TaskContext with ra & s0-s11
sd ra, 0(sp)
# __switch(
# current_task_cx_ptr: *mut TaskContext,
# next_task_cx_ptr: *const TaskContext
# )
# save kernel stack of current task
sd sp, 8(a0)
# save ra & s0~s11 of current execution
sd ra, 0(a0)
.set n, 0
.rept 12
SAVE_SN %n
.set n, n + 1
.endr
# ready for loading TaskContext a1 points to
ld sp, 0(a1)
# load registers in the TaskContext
ld ra, 0(sp)
# restore ra & s0~s11 of next execution
ld ra, 0(a1)
.set n, 0
.rept 12
LOAD_SN %n
.set n, n + 1
.endr
# pop TaskContext
addi sp, sp, 13*8
# restore kernel stack of next task
ld sp, 8(a1)
ret

@ -1,5 +1,9 @@
//!Wrap `switch.S` as a function
use super::TaskContext;
use core::arch::global_asm;
global_asm!(include_str!("switch.S"));
extern "C" {
pub fn __switch(current_task_cx: *const usize, next_task_cx: *const usize);
pub fn __switch(current_task_cx_ptr: *mut TaskContext, next_task_cx_ptr: *const TaskContext);
}

@ -1,26 +1,28 @@
use crate::mm::{MemorySet, PhysPageNum, KERNEL_SPACE, VirtAddr};
use crate::trap::{TrapContext, trap_handler};
use crate::config::{TRAP_CONTEXT};
//!Implementation of [`TaskControlBlock`]
use super::TaskContext;
use super::{PidHandle, pid_alloc, KernelStack};
use alloc::sync::{Weak, Arc};
use super::{pid_alloc, KernelStack, PidHandle};
use crate::config::TRAP_CONTEXT;
use crate::fs::{File, Stdin, Stdout};
use crate::mm::{MemorySet, PhysPageNum, VirtAddr, KERNEL_SPACE};
use crate::sync::UPSafeCell;
use crate::trap::{trap_handler, TrapContext};
use alloc::sync::{Arc, Weak};
use alloc::vec;
use alloc::vec::Vec;
use spin::{Mutex, MutexGuard};
use crate::fs::{File, Stdin, Stdout};
use core::cell::RefMut;
pub struct TaskControlBlock {
// immutable
pub pid: PidHandle,
pub kernel_stack: KernelStack,
// mutable
inner: Mutex<TaskControlBlockInner>,
inner: UPSafeCell<TaskControlBlockInner>,
}
pub struct TaskControlBlockInner {
pub trap_cx_ppn: PhysPageNum,
pub base_size: usize,
pub task_cx_ptr: usize,
pub task_cx: TaskContext,
pub task_status: TaskStatus,
pub memory_set: MemorySet,
pub parent: Option<Weak<TaskControlBlock>>,
@ -30,9 +32,6 @@ pub struct TaskControlBlockInner {
}
impl TaskControlBlockInner {
pub fn get_task_cx_ptr2(&self) -> *const usize {
&self.task_cx_ptr as *const usize
}
pub fn get_trap_cx(&self) -> &'static mut TrapContext {
self.trap_cx_ppn.get_mut()
}
@ -46,8 +45,7 @@ impl TaskControlBlockInner {
self.get_status() == TaskStatus::Zombie
}
pub fn alloc_fd(&mut self) -> usize {
if let Some(fd) = (0..self.fd_table.len())
.find(|fd| self.fd_table[*fd].is_none()) {
if let Some(fd) = (0..self.fd_table.len()).find(|fd| self.fd_table[*fd].is_none()) {
fd
} else {
self.fd_table.push(None);
@ -57,8 +55,8 @@ impl TaskControlBlockInner {
}
impl TaskControlBlock {
pub fn acquire_inner_lock(&self) -> MutexGuard<TaskControlBlockInner> {
self.inner.lock()
pub fn inner_exclusive_access(&self) -> RefMut<'_, TaskControlBlockInner> {
self.inner.exclusive_access()
}
pub fn new(elf_data: &[u8]) -> Self {
// memory_set with elf program headers/trampoline/trap context/user stack
@ -67,43 +65,40 @@ impl TaskControlBlock {
.translate(VirtAddr::from(TRAP_CONTEXT).into())
.unwrap()
.ppn();
let task_status = TaskStatus::Ready;
// alloc a pid and a kernel stack in kernel space
let pid_handle = pid_alloc();
let kernel_stack = KernelStack::new(&pid_handle);
let kernel_stack_top = kernel_stack.get_top();
// push a task context which goes to trap_return to the top of kernel stack
let task_cx_ptr = kernel_stack.push_on_top(TaskContext::goto_trap_return());
let task_control_block = Self {
pid: pid_handle,
kernel_stack,
inner: Mutex::new(TaskControlBlockInner {
trap_cx_ppn,
base_size: user_sp,
task_cx_ptr: task_cx_ptr as usize,
task_status,
memory_set,
parent: None,
children: Vec::new(),
exit_code: 0,
fd_table: vec![
// 0 -> stdin
Some(Arc::new(Stdin)),
// 1 -> stdout
Some(Arc::new(Stdout)),
// 2 -> stderr
Some(Arc::new(Stdout)),
],
}),
inner: unsafe {
UPSafeCell::new(TaskControlBlockInner {
trap_cx_ppn,
base_size: user_sp,
task_cx: TaskContext::goto_trap_return(kernel_stack_top),
task_status: TaskStatus::Ready,
memory_set,
parent: None,
children: Vec::new(),
exit_code: 0,
fd_table: vec![
// 0 -> stdin
Some(Arc::new(Stdin)),
// 1 -> stdout
Some(Arc::new(Stdout)),
// 2 -> stderr
Some(Arc::new(Stdout)),
],
})
},
};
// prepare TrapContext in user space
// ---- acquire child PCB lock
let trap_cx = task_control_block.acquire_inner_lock().get_trap_cx();
// ---- release child PCB lock
let trap_cx = task_control_block.inner_exclusive_access().get_trap_cx();
*trap_cx = TrapContext::app_init_context(
entry_point,
user_sp,
KERNEL_SPACE.lock().token(),
KERNEL_SPACE.exclusive_access().token(),
kernel_stack_top,
trap_handler as usize,
);
@ -117,45 +112,36 @@ impl TaskControlBlock {
.unwrap()
.ppn();
// **** hold current PCB lock
let mut inner = self.inner.lock();
// **** access current TCB exclusively
let mut inner = self.inner_exclusive_access();
// substitute memory_set
inner.memory_set = memory_set;
// update trap_cx ppn
inner.trap_cx_ppn = trap_cx_ppn;
drop(inner);
// **** release current PCB lock manually
// initialize trap_cx
// **** acquire current PCB lock
let trap_cx = self.acquire_inner_lock().get_trap_cx();
// **** release current PCB lock
*trap_cx = TrapContext::app_init_context(
let trap_cx = TrapContext::app_init_context(
entry_point,
user_sp,
KERNEL_SPACE.lock().token(),
KERNEL_SPACE.exclusive_access().token(),
self.kernel_stack.get_top(),
trap_handler as usize,
);
*inner.get_trap_cx() = trap_cx;
// **** release current PCB
}
pub fn fork(self: &Arc<TaskControlBlock>) -> Arc<TaskControlBlock> {
// ---- hold parent PCB lock
let mut parent_inner = self.inner.lock();
let mut parent_inner = self.inner_exclusive_access();
// copy user space(include trap context)
let memory_set = MemorySet::from_existed_user(
&parent_inner.memory_set
);
let memory_set = MemorySet::from_existed_user(&parent_inner.memory_set);
let trap_cx_ppn = memory_set
.translate(VirtAddr::from(TRAP_CONTEXT).into())
.unwrap()
.ppn();
let task_status = TaskStatus::Ready;
// alloc a pid and a kernel stack in kernel space
let pid_handle = pid_alloc();
let kernel_stack = KernelStack::new(&pid_handle);
let kernel_stack_top = kernel_stack.get_top();
// push a goto_trap_return task_cx on the top of kernel stack
let task_cx_ptr = kernel_stack.push_on_top(TaskContext::goto_trap_return());
// copy fd table
let mut new_fd_table: Vec<Option<Arc<dyn File + Send + Sync>>> = Vec::new();
for fd in parent_inner.fd_table.iter() {
@ -168,33 +154,34 @@ impl TaskControlBlock {
let task_control_block = Arc::new(TaskControlBlock {
pid: pid_handle,
kernel_stack,
inner: Mutex::new(TaskControlBlockInner {
trap_cx_ppn,
base_size: parent_inner.base_size,
task_cx_ptr: task_cx_ptr as usize,
task_status,
memory_set,
parent: Some(Arc::downgrade(self)),
children: Vec::new(),
exit_code: 0,
fd_table: new_fd_table,
}),
inner: unsafe {
UPSafeCell::new(TaskControlBlockInner {
trap_cx_ppn,
base_size: parent_inner.base_size,
task_cx: TaskContext::goto_trap_return(kernel_stack_top),
task_status: TaskStatus::Ready,
memory_set,
parent: Some(Arc::downgrade(self)),
children: Vec::new(),
exit_code: 0,
fd_table: new_fd_table,
})
},
});
// add child
parent_inner.children.push(task_control_block.clone());
// modify kernel_sp in trap_cx
// **** acquire child PCB lock
let trap_cx = task_control_block.acquire_inner_lock().get_trap_cx();
// **** release child PCB lock
// **** access child PCB exclusively
let trap_cx = task_control_block.inner_exclusive_access().get_trap_cx();
trap_cx.kernel_sp = kernel_stack_top;
// return
task_control_block
// ---- release parent PCB lock
// **** release child PCB
// ---- release parent PCB
}
pub fn getpid(&self) -> usize {
self.pid.0
}
}
#[derive(Copy, Clone, PartialEq)]
@ -202,4 +189,4 @@ pub enum TaskStatus {
Ready,
Running,
Zombie,
}
}

@ -1,18 +1,20 @@
use riscv::register::time;
//! RISC-V timer-related functionality
use crate::config::CLOCK_FREQ;
use crate::sbi::set_timer;
use crate::config::CPU_FREQ;
use riscv::register::time;
const TICKS_PER_SEC: usize = 100;
const MSEC_PER_SEC: usize = 1000;
///get current time
pub fn get_time() -> usize {
time::read()
}
/// get current time in microseconds
pub fn get_time_ms() -> usize {
time::read() / (CPU_FREQ / MSEC_PER_SEC)
time::read() / (CLOCK_FREQ / MSEC_PER_SEC)
}
/// set the next timer interrupt
pub fn set_next_trigger() {
set_timer(get_time() + CPU_FREQ / TICKS_PER_SEC);
}
set_timer(get_time() + CLOCK_FREQ / TICKS_PER_SEC);
}

@ -1,17 +1,30 @@
use riscv::register::sstatus::{Sstatus, self, SPP};
//! Implementation of [`TrapContext`]
use riscv::register::sstatus::{self, Sstatus, SPP};
#[repr(C)]
#[derive(Debug)]
///trap context structure containing sstatus, sepc and registers
pub struct TrapContext {
/// general regs[0..31]
pub x: [usize; 32],
/// CSR sstatus
pub sstatus: Sstatus,
/// CSR sepc
pub sepc: usize,
/// Addr of Page Table
pub kernel_satp: usize,
/// kernel stack
pub kernel_sp: usize,
/// Addr of trap_handler function
pub trap_handler: usize,
}
impl TrapContext {
pub fn set_sp(&mut self, sp: usize) { self.x[2] = sp; }
///set stack pointer to x_2 reg (sp)
pub fn set_sp(&mut self, sp: usize) {
self.x[2] = sp;
}
///init app context
pub fn app_init_context(
entry: usize,
sp: usize,
@ -22,8 +35,6 @@ impl TrapContext {
let mut sstatus = sstatus::read();
// set CPU privilege to User after trapping back
sstatus.set_spp(SPP::User);
// enable Supervisor mode interrupt after trapping back
sstatus.set_spie(true);
let mut cx = Self {
x: [0; 32],
sstatus,

@ -1,30 +1,33 @@
//! Trap handling functionality
//!
//! For rCore, we have a single trap entry point, namely `__alltraps`. At
//! initialization in [`init()`], we set the `stvec` CSR to point to it.
//!
//! All traps go through `__alltraps`, which is defined in `trap.S`. The
//! assembly language code does just enough work restore the kernel space
//! context, ensuring that Rust code safely runs, and transfers control to
//! [`trap_handler()`].
//!
//! It then calls different functionality based on what exactly the exception
//! was. For example, timer interrupts trigger task preemption, and syscalls go
//! to [`syscall()`].
mod context;
use riscv::register::{
mtvec::TrapMode,
stvec,
scause::{
self,
Trap,
Exception,
Interrupt,
},
stval,
sstatus,
sie,
};
use crate::config::{TRAMPOLINE, TRAP_CONTEXT};
use crate::syscall::syscall;
use crate::task::{
exit_current_and_run_next,
suspend_current_and_run_next,
current_user_token,
current_trap_cx,
current_trap_cx, current_user_token, exit_current_and_run_next, suspend_current_and_run_next,
};
use crate::timer::set_next_trigger;
use crate::config::{TRAP_CONTEXT, TRAMPOLINE};
use core::arch::{asm, global_asm};
use riscv::register::{
mtvec::TrapMode,
scause::{self, Exception, Interrupt, Trap},
sie, stval, stvec,
};
global_asm!(include_str!("trap.S"));
/// initialize CSR `stvec` as the entry of `__alltraps`
pub fn init() {
set_kernel_trap_entry();
}
@ -40,17 +43,15 @@ fn set_user_trap_entry() {
stvec::write(TRAMPOLINE as usize, TrapMode::Direct);
}
}
#[allow(unused)]
pub fn enable_interrupt() {
unsafe { sstatus::set_sie(); }
}
/// enable timer interrupt in sie CSR
pub fn enable_timer_interrupt() {
unsafe { sie::set_stimer(); }
unsafe {
sie::set_stimer();
}
}
#[no_mangle]
/// handle an interrupt, exception, or system call from user space
pub fn trap_handler() -> ! {
set_kernel_trap_entry();
let scause = scause::read();
@ -66,14 +67,14 @@ pub fn trap_handler() -> ! {
cx = current_trap_cx();
cx.x[10] = result as usize;
}
Trap::Exception(Exception::StoreFault) |
Trap::Exception(Exception::StorePageFault) |
Trap::Exception(Exception::InstructionFault) |
Trap::Exception(Exception::InstructionPageFault) |
Trap::Exception(Exception::LoadFault) |
Trap::Exception(Exception::LoadPageFault) => {
Trap::Exception(Exception::StoreFault)
| Trap::Exception(Exception::StorePageFault)
| Trap::Exception(Exception::InstructionFault)
| Trap::Exception(Exception::InstructionPageFault)
| Trap::Exception(Exception::LoadFault)
| Trap::Exception(Exception::LoadPageFault) => {
println!(
"[kernel] {:?} in application, bad addr = {:#x}, bad instruction = {:#x}, core dumped.",
"[kernel] {:?} in application, bad addr = {:#x}, bad instruction = {:#x}, kernel killed it.",
scause.cause(),
stval,
current_trap_cx().sepc,
@ -82,7 +83,7 @@ pub fn trap_handler() -> ! {
exit_current_and_run_next(-2);
}
Trap::Exception(Exception::IllegalInstruction) => {
println!("[kernel] IllegalInstruction in application, core dumped.");
println!("[kernel] IllegalInstruction in application, kernel killed it.");
// illegal instruction exit code
exit_current_and_run_next(-3);
}
@ -91,13 +92,21 @@ pub fn trap_handler() -> ! {
suspend_current_and_run_next();
}
_ => {
panic!("Unsupported trap {:?}, stval = {:#x}!", scause.cause(), stval);
panic!(
"Unsupported trap {:?}, stval = {:#x}!",
scause.cause(),
stval
);
}
}
//println!("before trap_return");
trap_return();
}
#[no_mangle]
/// set the new addr of __restore asm function in TRAMPOLINE page,
/// set the reg a0 = trap_cx_ptr, reg a1 = phy addr of usr page table,
/// finally, jump to new addr of __restore asm function
pub fn trap_return() -> ! {
set_user_trap_entry();
let trap_cx_ptr = TRAP_CONTEXT;
@ -108,15 +117,24 @@ pub fn trap_return() -> ! {
}
let restore_va = __restore as usize - __alltraps as usize + TRAMPOLINE;
unsafe {
llvm_asm!("fence.i" :::: "volatile");
llvm_asm!("jr $0" :: "r"(restore_va), "{a0}"(trap_cx_ptr), "{a1}"(user_satp) :: "volatile");
asm!(
"fence.i",
"jr {restore_va}",
restore_va = in(reg) restore_va,
in("a0") trap_cx_ptr,
in("a1") user_satp,
options(noreturn)
);
}
panic!("Unreachable in back_to_user!");
}
#[no_mangle]
/// Unimplement: traps/interrupts/exceptions from kernel mode
/// Todo: Chapter 9: I/O device
pub fn trap_from_kernel() -> ! {
use riscv::register::sepc;
println!("stval = {:#x}, sepc = {:#x}", stval::read(), sepc::read());
panic!("a trap {:?} from kernel!", scause::read().cause());
}
pub use context::{TrapContext};
pub use context::TrapContext;

@ -1 +1 @@
nightly-2020-11-01
nightly-2022-04-11

File diff suppressed because one or more lines are too long

@ -7,4 +7,8 @@ edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
buddy_system_allocator = "0.6"
buddy_system_allocator = "0.6"
bitflags = "1.2.1"
[profile.release]
debug = true

@ -20,4 +20,4 @@ build: binary
clean:
@cargo clean
.PHONY: elf binary build clean
.PHONY: elf binary build clean

@ -0,0 +1,27 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use user_lib::{close, open, read, OpenFlags};
#[no_mangle]
pub fn main() -> i32 {
let fd = open("filea\0", OpenFlags::RDONLY);
if fd == -1 {
panic!("Error occured when opening file");
}
let fd = fd as usize;
let mut buf = [0u8; 256];
loop {
let size = read(fd, &mut buf) as usize;
if size == 0 {
break;
}
println!("{}", core::str::from_utf8(&buf[..size]).unwrap());
}
close(fd);
0
}

@ -3,7 +3,7 @@
#[macro_use]
extern crate user_lib;
use user_lib::{fork, yield_, waitpid, exit, wait};
use user_lib::{exit, fork, wait, waitpid, yield_};
const MAGIC: i32 = -0x10384;
@ -13,7 +13,9 @@ pub fn main() -> i32 {
let pid = fork();
if pid == 0 {
println!("I am the child.");
for _ in 0..7 { yield_(); }
for _ in 0..7 {
yield_();
}
exit(MAGIC);
} else {
println!("I am parent, fork a child pid {}", pid);
@ -26,4 +28,3 @@ pub fn main() -> i32 {
println!("exit pass.");
0
}

@ -41,4 +41,4 @@ pub fn main() -> i32 {
println!("{}", color_text!(text, i));
}
0
}
}

@ -0,0 +1,29 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
use user_lib::{close, open, read, write, OpenFlags};
#[no_mangle]
pub fn main() -> i32 {
let test_str = "Hello, world!";
let filea = "filea\0";
let fd = open(filea, OpenFlags::CREATE | OpenFlags::WRONLY);
assert!(fd > 0);
let fd = fd as usize;
write(fd, test_str.as_bytes());
close(fd);
let fd = open(filea, OpenFlags::RDONLY);
assert!(fd > 0);
let fd = fd as usize;
let mut buffer = [0u8; 100];
let read_len = read(fd, &mut buffer) as usize;
close(fd);
assert_eq!(test_str, core::str::from_utf8(&buffer[..read_len]).unwrap(),);
println!("file_test passed!");
0
}

@ -4,9 +4,9 @@
#[macro_use]
extern crate user_lib;
use user_lib::{fork, wait, exit};
use user_lib::{exit, fork, wait};
const MAX_CHILD: usize = 40;
const MAX_CHILD: usize = 30;
#[no_mangle]
pub fn main() -> i32 {
@ -31,4 +31,4 @@ pub fn main() -> i32 {
}
println!("forktest pass.");
0
}
}

@ -4,7 +4,7 @@
#[macro_use]
extern crate user_lib;
use user_lib::{fork, wait, getpid, exit, sleep, get_time};
use user_lib::{exit, fork, get_time, getpid, sleep, wait};
static NUM: usize = 30;
@ -14,7 +14,8 @@ pub fn main() -> i32 {
let pid = fork();
if pid == 0 {
let current_time = get_time();
let sleep_length = (current_time as i32 as isize) * (current_time as i32 as isize) % 1000 + 1000;
let sleep_length =
(current_time as i32 as isize) * (current_time as i32 as isize) % 1000 + 1000;
println!("pid {} sleep for {} ms", getpid(), sleep_length);
sleep(sleep_length as usize);
println!("pid {} OK!", getpid());
@ -22,12 +23,12 @@ pub fn main() -> i32 {
}
}
let mut xstate: i32 = 0;
let mut exit_code: i32 = 0;
for _ in 0..NUM {
assert!(wait(&mut xstate) > 0);
assert_eq!(xstate, 0);
assert!(wait(&mut exit_code) > 0);
assert_eq!(exit_code, 0);
}
assert!(wait(&mut xstate) < 0);
assert!(wait(&mut exit_code) < 0);
println!("forktest2 test passed!");
0
}
}

@ -18,11 +18,11 @@ pub fn main() -> i32 {
100
} else {
// parent process
let mut xstate: i32 = 0;
let mut exit_code: i32 = 0;
println!("ready waiting on parent process!");
assert_eq!(pid, wait(&mut xstate));
assert_eq!(xstate, 100);
println!("child process pid = {}, exit code = {}", pid, xstate);
assert_eq!(pid, wait(&mut exit_code));
assert_eq!(exit_code, 100);
println!("child process pid = {}, exit code = {}", pid, exit_code);
0
}
}
}

@ -4,7 +4,7 @@
#[macro_use]
extern crate user_lib;
use user_lib::{sleep, getpid, fork, exit, yield_};
use user_lib::{exit, fork, getpid, sleep, yield_};
const DEPTH: usize = 4;
@ -14,7 +14,7 @@ fn fork_child(cur: &str, branch: char) {
if l >= DEPTH {
return;
}
&mut next[..l].copy_from_slice(cur.as_bytes());
next[..l].copy_from_slice(cur.as_bytes());
next[l] = branch as u8;
if fork() == 0 {
fork_tree(core::str::from_utf8(&next[..l + 1]).unwrap());

@ -8,4 +8,4 @@ extern crate user_lib;
pub fn main() -> i32 {
println!("Hello world from user mode program!");
0
}
}

@ -0,0 +1,33 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
use user_lib::{close, get_time, open, write, OpenFlags};
#[no_mangle]
pub fn main() -> i32 {
let mut buffer = [0u8; 1024]; // 1KiB
for (i, ch) in buffer.iter_mut().enumerate() {
*ch = i as u8;
}
let f = open("testf\0", OpenFlags::CREATE | OpenFlags::WRONLY);
if f < 0 {
panic!("Open test file failed!");
}
let f = f as usize;
let start = get_time();
let size_mb = 1usize;
for _ in 0..1024 * size_mb {
write(f, &buffer);
}
close(f);
let time_ms = (get_time() - start) as usize;
let speed_kbs = size_mb * 1000000 / time_ms;
println!(
"{}MiB written, time cost = {}ms, write speed = {}KiB/s",
size_mb, time_ms, speed_kbs
);
0
}

@ -4,12 +4,7 @@
#[macro_use]
extern crate user_lib;
use user_lib::{
fork,
wait,
exec,
yield_,
};
use user_lib::{exec, fork, wait, yield_};
#[no_mangle]
fn main() -> i32 {
@ -25,10 +20,9 @@ fn main() -> i32 {
}
println!(
"[initproc] Released a zombie process, pid={}, exit_code={}",
pid,
exit_code,
pid, exit_code,
);
}
}
0
}
}

@ -1,12 +1,13 @@
#![no_std]
#![no_main]
#![allow(clippy::needless_range_loop)]
#[macro_use]
extern crate user_lib;
use user_lib::{fork, wait, yield_, exit, getpid, get_time};
use user_lib::{exit, fork, get_time, getpid, wait, yield_};
static NUM: usize = 35;
static NUM: usize = 30;
const N: usize = 10;
static P: i32 = 10007;
type Arr = [[i32; N]; N];
@ -56,13 +57,13 @@ pub fn main() -> i32 {
println!("fork ok.");
let mut xstate: i32 = 0;
let mut exit_code: i32 = 0;
for _ in 0..NUM {
if wait(&mut xstate) < 0 {
if wait(&mut exit_code) < 0 {
panic!("wait failed.");
}
}
assert!(wait(&mut xstate) < 0);
assert!(wait(&mut exit_code) < 0);
println!("matrix passed.");
0
}
}

@ -1,69 +0,0 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use user_lib::{fork, close, pipe, read, write, wait, get_time};
use alloc::format;
const LENGTH: usize = 3000;
#[no_mangle]
pub fn main() -> i32 {
// create pipes
// parent write to child
let mut down_pipe_fd = [0usize; 2];
// child write to parent
let mut up_pipe_fd = [0usize; 2];
pipe(&mut down_pipe_fd);
pipe(&mut up_pipe_fd);
let mut random_str = [0u8; LENGTH];
if fork() == 0 {
// close write end of down pipe
close(down_pipe_fd[1]);
// close read end of up pipe
close(up_pipe_fd[0]);
assert_eq!(read(down_pipe_fd[0], &mut random_str) as usize, LENGTH);
close(down_pipe_fd[0]);
let sum: usize = random_str.iter().map(|v| *v as usize).sum::<usize>();
println!("sum = {}(child)", sum);
let sum_str = format!("{}", sum);
write(up_pipe_fd[1], sum_str.as_bytes());
close(up_pipe_fd[1]);
println!("Child process exited!");
0
} else {
// close read end of down pipe
close(down_pipe_fd[0]);
// close write end of up pipe
close(up_pipe_fd[1]);
// generate a long random string
for i in 0..LENGTH {
random_str[i] = get_time() as u8;
}
// send it
assert_eq!(write(down_pipe_fd[1], &random_str) as usize, random_str.len());
// close write end of down pipe
close(down_pipe_fd[1]);
// calculate sum(parent)
let sum: usize = random_str.iter().map(|v| *v as usize).sum::<usize>();
println!("sum = {}(parent)", sum);
// recv sum(child)
let mut child_result = [0u8; 32];
let result_len = read(up_pipe_fd[0], &mut child_result) as usize;
close(up_pipe_fd[0]);
// check
assert_eq!(
sum,
str::parse::<usize>(
core::str::from_utf8(&child_result[..result_len]).unwrap()
).unwrap()
);
let mut _unused: i32 = 0;
wait(&mut _unused);
println!("pipe_large_test passed!");
0
}
}

@ -1,42 +0,0 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
use user_lib::{fork, close, pipe, read, write, wait};
static STR: &str = "Hello, world!";
#[no_mangle]
pub fn main() -> i32 {
// create pipe
let mut pipe_fd = [0usize; 2];
pipe(&mut pipe_fd);
// read end
assert_eq!(pipe_fd[0], 3);
// write end
assert_eq!(pipe_fd[1], 4);
if fork() == 0 {
// child process, read from parent
// close write_end
close(pipe_fd[1]);
let mut buffer = [0u8; 32];
let len_read = read(pipe_fd[0], &mut buffer) as usize;
assert_eq!(core::str::from_utf8(&buffer[..len_read]).unwrap(), STR);
println!("Read OK, child process exited!");
0
} else {
// parent process, write to child
// close read end
close(pipe_fd[0]);
assert_eq!(write(pipe_fd[1], STR.as_bytes()), STR.len() as isize);
// close write end
close(pipe_fd[1]);
let mut child_exit_code: i32 = 0;
wait(&mut child_exit_code);
assert_eq!(child_exit_code, 0);
println!("pipetest passed!");
0
}
}

@ -1,21 +0,0 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
use user_lib::{fork, exec, wait};
#[no_mangle]
pub fn main() -> i32 {
for i in 0..1000 {
if fork() == 0 {
exec("pipe_large_test\0");
} else {
let mut _unused: i32 = 0;
wait(&mut _unused);
println!("Iter {} OK.", i);
}
}
0
}

@ -4,7 +4,7 @@
#[macro_use]
extern crate user_lib;
use user_lib::{sleep, exit, get_time, fork, waitpid};
use user_lib::{exit, fork, get_time, sleep, waitpid};
fn sleepy() {
let time: usize = 100;
@ -19,12 +19,12 @@ fn sleepy() {
pub fn main() -> i32 {
let current_time = get_time();
let pid = fork();
let mut xstate: i32 = 0;
let mut exit_code: i32 = 0;
if pid == 0 {
sleepy();
}
assert!(waitpid(pid as usize, &mut xstate) == pid && xstate == 0);
assert!(waitpid(pid as usize, &mut exit_code) == pid && exit_code == 0);
println!("use {} msecs.", get_time() - current_time);
println!("sleep pass.");
0
}
}

@ -13,7 +13,11 @@ pub fn main() -> i32 {
println!("current time_msec = {}", start);
sleep(100);
let end = get_time();
println!("time_msec = {} after sleeping 100 ticks, delta = {}ms!", end, end - start);
println!(
"time_msec = {} after sleeping 100 ticks, delta = {}ms!",
end,
end - start
);
println!("r_sleep passed!");
0
}
}

@ -5,7 +5,7 @@
extern crate user_lib;
fn f(d: usize) {
println!("d = {}",d);
println!("d = {}", d);
f(d + 1);
}
@ -14,4 +14,4 @@ pub fn main() -> i32 {
println!("It should trigger segmentation fault!");
f(0);
0
}
}

@ -1,5 +1,6 @@
#![no_std]
#![no_main]
#![allow(clippy::println_empty_string)]
extern crate alloc;
@ -12,8 +13,8 @@ const DL: u8 = 0x7fu8;
const BS: u8 = 0x08u8;
use alloc::string::String;
use user_lib::{fork, exec, waitpid, yield_};
use user_lib::console::getchar;
use user_lib::{exec, fork, waitpid};
#[no_mangle]
pub fn main() -> i32 {
@ -36,18 +37,10 @@ pub fn main() -> i32 {
}
unreachable!();
} else {
let mut xstate: i32 = 0;
let mut exit_pid: isize;
loop {
exit_pid = waitpid(pid as usize, &mut xstate);
if exit_pid == -1 {
yield_();
} else {
assert_eq!(pid, exit_pid);
println!("Shell: Process {} exited with code {}", pid, xstate);
break;
}
}
let mut exit_code: i32 = 0;
let exit_pid = waitpid(pid as usize, &mut exit_code);
assert_eq!(pid, exit_pid);
println!("Shell: Process {} exited with code {}", pid, exit_code);
}
line.clear();
}
@ -67,4 +60,4 @@ pub fn main() -> i32 {
}
}
}
}
}

@ -29,12 +29,15 @@ pub fn main() -> i32 {
exec(*test);
panic!("unreachable!");
} else {
let mut xstate: i32 = Default::default();
let wait_pid = waitpid(pid as usize, &mut xstate);
let mut exit_code: i32 = Default::default();
let wait_pid = waitpid(pid as usize, &mut exit_code);
assert_eq!(pid, wait_pid);
println!("\x1b[32mUsertests: Test {} in Process {} exited with code {}\x1b[0m", test, pid, xstate);
println!(
"\x1b[32mUsertests: Test {} in Process {} exited with code {}\x1b[0m",
test, pid, exit_code
);
}
}
println!("Usertests passed!");
0
}
}

@ -14,4 +14,4 @@ pub fn main() -> i32 {
}
println!("yield pass.");
0
}
}

@ -4,9 +4,14 @@ use super::exit;
fn panic_handler(panic_info: &core::panic::PanicInfo) -> ! {
let err = panic_info.message().unwrap();
if let Some(location) = panic_info.location() {
println!("Panicked at {}:{}, {}", location.file(), location.line(), err);
println!(
"Panicked at {}:{}, {}",
location.file(),
location.line(),
err
);
} else {
println!("Panicked: {}", err);
}
exit(-1);
}
}

@ -1,20 +1,21 @@
#![no_std]
#![feature(llvm_asm)]
#![feature(linkage)]
#![feature(panic_info_message)]
#![feature(alloc_error_handler)]
#[macro_use]
pub mod console;
mod syscall;
mod lang_items;
mod syscall;
extern crate alloc;
#[macro_use]
extern crate bitflags;
use syscall::*;
use buddy_system_allocator::LockedHeap;
use syscall::*;
const USER_HEAP_SIZE: usize = 16384;
const USER_HEAP_SIZE: usize = 32768;
static mut HEAP_SPACE: [u8; USER_HEAP_SIZE] = [0; USER_HEAP_SIZE];
@ -42,20 +43,52 @@ fn main() -> i32 {
panic!("Cannot find main!");
}
pub fn close(fd: usize) -> isize { sys_close(fd) }
pub fn pipe(pipe_fd: &mut [usize]) -> isize { sys_pipe(pipe_fd) }
pub fn read(fd: usize, buf: &mut [u8]) -> isize { sys_read(fd, buf) }
pub fn write(fd: usize, buf: &[u8]) -> isize { sys_write(fd, buf) }
pub fn exit(exit_code: i32) -> ! { sys_exit(exit_code); }
pub fn yield_() -> isize { sys_yield() }
pub fn get_time() -> isize { sys_get_time() }
pub fn getpid() -> isize { sys_getpid() }
pub fn fork() -> isize { sys_fork() }
pub fn exec(path: &str) -> isize { sys_exec(path) }
bitflags! {
pub struct OpenFlags: u32 {
const RDONLY = 0;
const WRONLY = 1 << 0;
const RDWR = 1 << 1;
const CREATE = 1 << 9;
const TRUNC = 1 << 10;
}
}
pub fn open(path: &str, flags: OpenFlags) -> isize {
sys_open(path, flags.bits)
}
pub fn close(fd: usize) -> isize {
sys_close(fd)
}
pub fn read(fd: usize, buf: &mut [u8]) -> isize {
sys_read(fd, buf)
}
pub fn write(fd: usize, buf: &[u8]) -> isize {
sys_write(fd, buf)
}
pub fn exit(exit_code: i32) -> ! {
sys_exit(exit_code);
}
pub fn yield_() -> isize {
sys_yield()
}
pub fn get_time() -> isize {
sys_get_time()
}
pub fn getpid() -> isize {
sys_getpid()
}
pub fn fork() -> isize {
sys_fork()
}
pub fn exec(path: &str) -> isize {
sys_exec(path)
}
pub fn wait(exit_code: &mut i32) -> isize {
loop {
match sys_waitpid(-1, exit_code as *mut _) {
-2 => { yield_(); }
-2 => {
yield_();
}
// -1 or a real pid
exit_pid => return exit_pid,
}
@ -65,7 +98,9 @@ pub fn wait(exit_code: &mut i32) -> isize {
pub fn waitpid(pid: usize, exit_code: &mut i32) -> isize {
loop {
match sys_waitpid(pid as isize, exit_code as *mut _) {
-2 => { yield_(); }
-2 => {
yield_();
}
// -1 or a real pid
exit_pid => return exit_pid,
}
@ -76,4 +111,4 @@ pub fn sleep(period_ms: usize) {
while sys_get_time() < start + period_ms as isize {
sys_yield();
}
}
}

@ -2,7 +2,7 @@
OUTPUT_ARCH(riscv)
ENTRY(_start)
BASE_ADDRESS = 0x0;
BASE_ADDRESS = 0x10000;
SECTIONS
{
@ -14,16 +14,19 @@ SECTIONS
. = ALIGN(4K);
.rodata : {
*(.rodata .rodata.*)
*(.srodata .srodata.*)
}
. = ALIGN(4K);
.data : {
*(.data .data.*)
*(.sdata .sdata.*)
}
.bss : {
*(.bss .bss.*)
*(.sbss .sbss.*)
}
/DISCARD/ : {
*(.eh_frame)
*(.debug*)
}
}
}

@ -1,5 +1,7 @@
use core::arch::asm;
const SYSCALL_OPEN: usize = 56;
const SYSCALL_CLOSE: usize = 57;
const SYSCALL_PIPE: usize = 59;
const SYSCALL_READ: usize = 63;
const SYSCALL_WRITE: usize = 64;
const SYSCALL_EXIT: usize = 93;
@ -13,26 +15,30 @@ const SYSCALL_WAITPID: usize = 260;
fn syscall(id: usize, args: [usize; 3]) -> isize {
let mut ret: isize;
unsafe {
llvm_asm!("ecall"
: "={x10}" (ret)
: "{x10}" (args[0]), "{x11}" (args[1]), "{x12}" (args[2]), "{x17}" (id)
: "memory"
: "volatile"
asm!(
"ecall",
inlateout("x10") args[0] => ret,
in("x11") args[1],
in("x12") args[2],
in("x17") id
);
}
ret
}
pub fn sys_close(fd: usize) -> isize {
syscall(SYSCALL_CLOSE, [fd, 0, 0])
pub fn sys_open(path: &str, flags: u32) -> isize {
syscall(SYSCALL_OPEN, [path.as_ptr() as usize, flags as usize, 0])
}
pub fn sys_pipe(pipe: &mut [usize]) -> isize {
syscall(SYSCALL_PIPE, [pipe.as_mut_ptr() as usize, 0, 0])
pub fn sys_close(fd: usize) -> isize {
syscall(SYSCALL_CLOSE, [fd, 0, 0])
}
pub fn sys_read(fd: usize, buffer: &mut [u8]) -> isize {
syscall(SYSCALL_READ, [fd, buffer.as_mut_ptr() as usize, buffer.len()])
syscall(
SYSCALL_READ,
[fd, buffer.as_mut_ptr() as usize, buffer.len()],
)
}
pub fn sys_write(fd: usize, buffer: &[u8]) -> isize {
@ -64,6 +70,6 @@ pub fn sys_exec(path: &str) -> isize {
syscall(SYSCALL_EXEC, [path.as_ptr() as usize, 0, 0])
}
pub fn sys_waitpid(pid: isize, xstatus: *mut i32) -> isize {
syscall(SYSCALL_WAITPID, [pid as usize, xstatus as usize, 0])
}
pub fn sys_waitpid(pid: isize, exit_code: *mut i32) -> isize {
syscall(SYSCALL_WAITPID, [pid as usize, exit_code as usize, 0])
}

Loading…
Cancel
Save