You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

92 lines
3.5 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import numpy as np
import pandas as pd
class DataLoader():
"""A class for loading and transforming data for the lstm model"""
def __init__(self, filename, split, cols):
'''
filename:数据所在文件名, '.csv'格式文件
split:训练与测试数据分割变量
cols:选择data的一列或者多列进行分析如 Close 和 Volume
'''
dataframe = pd.read_csv(filename)
i_split = int(len(dataframe) * split)
self.data_train = dataframe.get(cols).values[:i_split] #选择指定的列 进行分割 得到 未处理的训练数据
self.data_test = dataframe.get(cols).values[i_split:]
self.len_train = len(self.data_train)
self.len_test = len(self.data_test)
self.len_train_windows = None
def get_test_data(self, seq_len, normalise):
'''
Create x, y test data windows
Warning: batch method, not generative, make sure you have enough memory to
load data, otherwise reduce size of the training split.
'''
data_windows = []
for i in range(self.len_test - seq_len):
data_windows.append(self.data_test[i:i+seq_len]) #每一个元素是长度为seq_len的 list即一个window
data_windows = np.array(data_windows).astype(float)
data_windows = self.normalise_windows(data_windows, single_window=False) if normalise else data_windows
x = data_windows[:, :-1]
y = data_windows[:, -1, [0]]
return x, y
def get_train_data(self, seq_len, normalise):
'''
Create x, y train data windows
Warning: batch method, not generative, make sure you have enough memory to
load data, otherwise use generate_training_window() method.
'''
data_x = []
data_y = []
for i in range(self.len_train - seq_len):
x, y = self._next_window(i, seq_len, normalise)
data_x.append(x)
data_y.append(y)
return np.array(data_x), np.array(data_y)
def generate_train_batch(self, seq_len, batch_size, normalise):
'''Yield a generator of training data from filename on given list of cols split for train/test'''
i = 0
while i < (self.len_train - seq_len):
x_batch = []
y_batch = []
for b in range(batch_size):
if i >= (self.len_train - seq_len):
# stop-condition for a smaller final batch if data doesn't divide evenly
yield np.array(x_batch), np.array(y_batch)
x, y = self._next_window(i, seq_len, normalise)
x_batch.append(x)
y_batch.append(y)
i += 1
yield np.array(x_batch), np.array(y_batch)
def _next_window(self, i, seq_len, normalise):
'''Generates the next data window from the given index location i'''
window = self.data_train[i:i+seq_len]
window = self.normalise_windows(window, single_window=True)[0] if normalise else window
x = window[:-1]
y = window[-1, [0]] # 最后一行的 0个元素 组成array类型若是[0,2]则取第0个和第2个元素组成array[-1, 0]则是取最后一行第0个元素
# 只返回该元素的值[]和()用于索引都是切片操作所以这里的y即label是 第一列Close列
return x, y
def normalise_windows(self, window_data, single_window=False):
'''Normalise window with a base value of zero'''
normalised_data = []
window_data = [window_data] if single_window else window_data
for window in window_data:
normalised_window = []
for col_i in range(window.shape[1]):
normalised_col = [((float(p) / float(window[0, col_i])) - 1) for p in window[:, col_i]]
normalised_window.append(normalised_col)
normalised_window = np.array(normalised_window).T # reshape and transpose array back into original multidimensional format
normalised_data.append(normalised_window)
return np.array(normalised_data)