You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1 line
139 KiB

1 year ago
{"index":{"version":"0.5.12","fields":[{"name":"title","boost":10},{"name":"keywords","boost":15},{"name":"body","boost":1}],"ref":"url","documentStore":{"store":{"./":["2.x","app下载地址","english","qq993021993","|","下载","中医药是中华民族的传统文化瑰宝,目前,中药种类繁多,辨认多依靠于经验,这增加了我们辨识出中药的难度;同时,我们需要记忆大量的中药特征和药效,查询效率慢。","中文","中药图片拍照识别app","交流、反馈与参与贡献","使用flutter对移动端重写提高性能与跨平台性同时进一步调高检测模型的精度。","前言","如需关注项目最新动态请watch、star项目同时也是对项目最好的支持","对版本1.x进行重构升级重新组织了代码结构移除了特别不稳定且重量级的组件deeplearn4j。","开发计划","微信:","感谢!^_^","我们目标是开发一款中药识别的app主要利用细粒度图像识别技术用户只需利用手机对中药进行拍照便可识别提高学习效率高效的识别与学习各类中药的特征和药效价值促进人工智能与医疗的结合。","欢迎参与技术讨论、二次开发咨询、问题反馈和建议!","版本说明","简介","视频","视频演示","预览"],"docs/function/":["主要功能展示","产品功能","全文检索","分类检索","拍照识别","点击右上方筛选按钮,对中药进行分类检索。","点击导航栏拍照按钮,拍摄中药的图片上传后进行识别。","设立中医药问题讨论区,可以提出问题或者回答。","输入关键词对中药库进行检索,对关键词进行粉刺搜索并高亮显示。","问题社区","首页及中药信息页"],"docs/technology/":["+","ant","app端","collection爬虫工程","dataset数据集","data运行时数据","design","medicin","model卷积神经网络","nativ","runtim","server服务器端","util公用工具类","主要使用react","主要包含六个模块:","主要流程","后端","开发技术","设计实现。"],"docs/technology/DATASET.html":["1","10","11","12","13","14","15","16","17","18","19","2","3","4","5","6","7","8","9","中药一级分类信息","中药名字","中药图片","中药字段","中药形态","中药详细信息","临床应用","产地分布","使用禁忌","别名","功效作用","化学成分","字段名","性味归经","数据集","样例数据","现代研究","编号","英文名","药材形状","药材炮制","药理研究","药用部位","配伍配方","采集加工"],"docs/technology/ALGORITHM.html":["\"./data/model/\";","\"chinese_medicine_model.h5\";","\"d:\\\\data\\\\model\\\\\"","\"medicine_nam","#","'..\\\\dataset\\\\dataset'","'chinese_medicine_model_v1.0.h5')","'chinese_medicine_model_v2.0.h5')","'resources\\\\imag","'resources\\\\kera","'resources\\\\train","(299,","(int","(ioexcept","*","**kwargs)","*/","+",".tolowercase().contains(\"windows\")","/","/**","//","0.704","0.713","0.744","0.749","0.750","0.760","0.762","0.764","0.766","0.772","0.773","0.777","0.779","0.780","0.787","0.790","0.803","0.825","0.895","0.900","0.901","0.919","0.921","0.923","0.928","0.930","0.931","0.932","0.936","0.937","0.938","0.942","0.943","0.945","0.953","0.960","0;","121","126","138,357,544","14","14,307,880","143,667,240","159","16","168","169","170","171","1准确率","20,242,984","200","201","215","22,910,480","23","23,851,784","232","25,097,128","25,613,800","25,636,712","255,","26","299)","299,","3)","3);","3,538,984","33","343","4,253,864","44,315,560","44,675,560","44,707,176","5,326,716","528","549","55,873,736","57","572","5准确率","60,380,648","60,419,944","8,062,504","80","88","88,949,818","92","96","98",":","=",">","?","@param","@return","@throw","```","activation='softmax',","ai开发板或本地计算机","base_model","base_model.layers:","callbacks=[early_stop,","catch","class","class_mode='categorical')","classes=1000,","classesinclude_top=true