/* * routines that scan and load a (host) Executable and Linkable Format (ELF) file * into the (emulated) memory. */ #include "elf.h" #include "string.h" #include "riscv.h" #include "spike_interface/spike_utils.h" typedef struct elf_info_t { spike_file_t *f; process *p; } elf_info; // // the implementation of allocater. allocates memory space for later segment loading // static void *elf_alloc_mb(elf_ctx *ctx, uint64 elf_pa, uint64 elf_va, uint64 size) { // directly returns the virtual address as we are in the Bare mode in lab1_x return (void *)elf_va; } // // actual file reading, using the spike file interface. // static uint64 elf_fpread(elf_ctx *ctx, void *dest, uint64 nb, uint64 offset) { elf_info *msg = (elf_info *)ctx->info; // call spike file utility to load the content of elf file into memory. // spike_file_pread will read the elf file (msg->f) from offset to memory (indicated by // *dest) for nb bytes. return spike_file_pread(msg->f, dest, nb, offset); } // // init elf_ctx, a data structure that loads the elf. // elf_status elf_init(elf_ctx *ctx, void *info) { ctx->info = info; // load the elf header if (elf_fpread(ctx, &ctx->ehdr, sizeof(ctx->ehdr), 0) != sizeof(ctx->ehdr)) return EL_EIO; // check the signature (magic value) of the elf if (ctx->ehdr.magic != ELF_MAGIC) return EL_NOTELF; return EL_OK; } // leb128 (little-endian base 128) is a variable-length // compression algoritm in DWARF void read_uleb128(uint64 *out, char **off) { uint64 value = 0; int shift = 0; uint8 b; for (;;) { b = *(uint8 *)(*off); (*off)++; value |= ((uint64)b & 0x7F) << shift; shift += 7; if ((b & 0x80) == 0) break; } if (out) *out = value; } void read_sleb128(int64 *out, char **off) { int64 value = 0; int shift = 0; uint8 b; for (;;) { b = *(uint8 *)(*off); (*off)++; value |= ((uint64_t)b & 0x7F) << shift; shift += 7; if ((b & 0x80) == 0) break; } if (shift < 64 && (b & 0x40)) value |= -(1 << shift); if (out) *out = value; } // Since reading below types through pointer cast requires aligned address, // so we can only read them byte by byte void read_uint64(uint64 *out, char **off) { *out = 0; for (int i = 0; i < 8; i++) { *out |= (uint64)(**off) << (i << 3); (*off)++; } } void read_uint32(uint32 *out, char **off) { *out = 0; for (int i = 0; i < 4; i++) { *out |= (uint32)(**off) << (i << 3); (*off)++; } } void read_uint16(uint16 *out, char **off) { *out = 0; for (int i = 0; i < 2; i++) { *out |= (uint16)(**off) << (i << 3); (*off)++; } } /* * analyzis the data in the debug_line section * * the function needs 3 parameters: elf context, data in the debug_line section * and length of debug_line section * * make 3 arrays: * "process->dir" stores all directory paths of code files * "process->file" stores all code file names of code files and their directory path index of array "dir" * "process->line" stores all relationships map instruction addresses to code line numbers * and their code file name index of array "file" */ void make_addr_line(elf_ctx *ctx, char *debug_line, uint64 length) { process *p = ((elf_info *)ctx->info)->p; p->debugline = debug_line; // directory name char pointer array p->dir = (char **)((((uint64)debug_line + length + 7) >> 3) << 3); int dir_ind = 0, dir_base; // file name char pointer array p->file = (code_file *)(p->dir + 64); int file_ind = 0, file_base; // table array p->line = (addr_line *)(p->file + 64); p->line_ind = 0; char *off = debug_line; while (off < debug_line + length) { // iterate each compilation unit(CU) debug_header *dh = (debug_header *)off; off += sizeof(debug_header); dir_base = dir_ind; file_base = file_ind; // get directory name char pointer in this CU while (*off != 0) { p->dir[dir_ind++] = off; while (*off != 0) off++; off++; } off++; // get file name char pointer in this CU while (*off != 0) { p->file[file_ind].file = off; while (*off != 0) off++; off++; uint64 dir; read_uleb128(&dir, &off); p->file[file_ind++].dir = dir - 1 + dir_base; read_uleb128(NULL, &off); read_uleb128(NULL, &off); } off++; addr_line regs; regs.addr = 0; regs.file = 1; regs.line = 1; // simulate the state machine op code for (;;) { uint8 op = *(off++); switch (op) { case 0: // Extended Opcodes read_uleb128(NULL, &off); op = *(off++); switch (op) { case 1: // DW_LNE_end_sequence if (p->line_ind > 0 && p->line[p->line_ind - 1].addr == regs.addr) p->line_ind--; p->line[p->line_ind] = regs; p->line[p->line_ind].file += file_base - 1; p->line_ind++; goto endop; case 2: // DW_LNE_set_address read_uint64(®s.addr, &off); break; // ignore DW_LNE_define_file case 4: // DW_LNE_set_discriminator read_uleb128(NULL, &off); break; } break; case 1: // DW_LNS_copy if (p->line_ind > 0 && p->line[p->line_ind - 1].addr == regs.addr) p->line_ind--; p->line[p->line_ind] = regs; p->line[p->line_ind].file += file_base - 1; p->line_ind++; break; case 2: { // DW_LNS_advance_pc uint64 delta; read_uleb128(&delta, &off); regs.addr += delta * dh->min_instruction_length; break; } case 3: { // DW_LNS_advance_line int64 delta; read_sleb128(&delta, &off); regs.line += delta; break; } case 4: // DW_LNS_set_file read_uleb128(®s.file, &off); break; case 5: // DW_LNS_set_column read_uleb128(NULL, &off); break; case 6: // DW_LNS_negate_stmt case 7: // DW_LNS_set_basic_block break; case 8: { // DW_LNS_const_add_pc int adjust = 255 - dh->opcode_base; int delta = (adjust / dh->line_range) * dh->min_instruction_length; regs.addr += delta; break; } case 9: { // DW_LNS_fixed_advanced_pc uint16 delta; read_uint16(&delta, &off); regs.addr += delta; break; } // ignore 10, 11 and 12 default: { // Special Opcodes int adjust = op - dh->opcode_base; int addr_delta = (adjust / dh->line_range) * dh->min_instruction_length; int line_delta = dh->line_base + (adjust % dh->line_range); regs.addr += addr_delta; regs.line += line_delta; if (p->line_ind > 0 && p->line[p->line_ind - 1].addr == regs.addr) p->line_ind--; p->line[p->line_ind] = regs; p->line[p->line_ind].file += file_base - 1; p->line_ind++; break; } } } endop:; } // for (int i = 0; i < p->line_ind; i++) // sprint("%p %d %d\n", p->line[i].addr, p->line[i].line, p->line[i].file); } // // load the elf segments to memory regions as we are in Bare mode in lab1 // elf_status elf_load(elf_ctx *ctx) { // elf_prog_header structure is defined in kernel/elf.h elf_prog_header ph_addr; int i, off; // traverse the elf program segment headers for (i = 0, off = ctx->ehdr.phoff; i < ctx->ehdr.phnum; i++, off += sizeof(ph_addr)) { // read segment headers if (elf_fpread(ctx, (void *)&ph_addr, sizeof(ph_addr), off) != sizeof(ph_addr)) return EL_EIO; if (ph_addr.type != ELF_PROG_LOAD) continue; if (ph_addr.memsz < ph_addr.filesz) return EL_ERR; if (ph_addr.vaddr + ph_addr.memsz < ph_addr.vaddr) return EL_ERR; // allocate memory block before elf loading void *dest = elf_alloc_mb(ctx, ph_addr.vaddr, ph_addr.vaddr, ph_addr.memsz); // actual loading if (elf_fpread(ctx, dest, ph_addr.memsz, ph_addr.off) != ph_addr.memsz) return EL_EIO; } return EL_OK; } typedef union { uint64 buf[MAX_CMDLINE_ARGS]; char *argv[MAX_CMDLINE_ARGS]; } arg_buf; // // returns the number (should be 1) of string(s) after PKE kernel in command line. // and store the string(s) in arg_bug_msg. // static size_t parse_args(arg_buf *arg_bug_msg) { // HTIFSYS_getmainvars frontend call reads command arguments to (input) *arg_bug_msg long r = frontend_syscall(HTIFSYS_getmainvars, (uint64)arg_bug_msg, sizeof(*arg_bug_msg), 0, 0, 0, 0, 0); kassert(r == 0); size_t pk_argc = arg_bug_msg->buf[0]; uint64 *pk_argv = &arg_bug_msg->buf[1]; int arg = 1; // skip the PKE OS kernel string, leave behind only the application name for (size_t i = 0; arg + i < pk_argc; i++) arg_bug_msg->argv[i] = (char *)(uintptr_t)pk_argv[arg + i]; //returns the number of strings after PKE kernel in command line return pk_argc - arg; } // // load the elf of user application, by using the spike file interface. // void load_bincode_from_host_elf(process *p) { arg_buf arg_bug_msg; // retrieve command line arguements size_t argc = parse_args(&arg_bug_msg); if (!argc) panic("You need to specify the application program!\n"); sprint("Application: %s\n", arg_bug_msg.argv[0]); //elf loading. elf_ctx is defined in kernel/elf.h, used to track the loading process. elf_ctx elfloader; // elf_info is defined above, used to tie the elf file and its corresponding process. elf_info info; info.f = spike_file_open(arg_bug_msg.argv[0], O_RDONLY, 0); info.p = p; // IS_ERR_VALUE is a macro defined in spike_interface/spike_htif.h if (IS_ERR_VALUE(info.f)) panic("Fail on openning the input application program.\n"); // init elfloader context. elf_init() is defined above. if (elf_init(&elfloader, &info) != EL_OK) panic("fail to init elfloader.\n"); // load elf. elf_load() is defined above. if (elf_load(&elfloader) != EL_OK) panic("Fail on loading elf.\n"); // entry (virtual, also physical in lab1_x) address p->trapframe->epc = elfloader.ehdr.entry; // close the host spike file spike_file_close( info.f ); sprint("Application program entry point (virtual address): 0x%lx\n", p->trapframe->epc); }