Delete 'Bayes_iris.py'

文档及讲解
Q8xg5nefi 4 years ago
parent 114a3fe9c1
commit af6c239975

@ -1,47 +0,0 @@
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
import numpy as np
def bayes_iris():
"""
使用朴素贝叶斯对鸢尾花种类进行预测
:return:
"""
#1获取数据集
iris = load_iris()
print("查看特征值的名字:\n", iris.feature_names)
print("查看特征值:\n", iris.data, iris.data.shape)
#2划分数据集
x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22,test_size=0.7)
#3建立模型
estimator= GaussianNB();
#4模型训练
estimator.fit(x_train,y_train)
#5模型评估
#对比真实值:
y_predict = estimator.predict(x_test)
print("y_predict\n",y_predict)
print("直接对比真实值:\n",y_predict==y_test)
#计算准确率
score = estimator.score(x_test,y_test)
print("模型准确率为:\n",score)
#7做出预测
#[0]表示setosa[1]表示versicolor[2]表示virginica
X_new = np.array([[1.1, 5.9, 1.4, 2.2]]) #sklearn输入的数据必须是二维数组
prediction = estimator.predict(X_new)
print("预测的目标类别是:{}".format(prediction))
print("预测的目标类别花名是:{}".format(iris['target_names'][prediction]))
if __name__ == '__main__':
bayes_iris()
Loading…
Cancel
Save