parent
dba88c8ee9
commit
29a0f7e49a
@ -0,0 +1,37 @@
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import classification_report
|
||||
from simplepreprocessor import SimplePreprocessor
|
||||
from simpledatasetloader import SimpleDatasetLoader
|
||||
from imutils import paths
|
||||
import argparse
|
||||
|
||||
if __name__ == '__main__':
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-d", "--dataset", required=True, help="path to input dataset")
|
||||
ap.add_argument("-k", "--neighbors", type=int, default=1, help="of nearest neighbors for classification")
|
||||
ap.add_argument("-j", "--jobs", type=int, help="of jobs for K-NN distance (-1 uses all variables cores)")
|
||||
args = vars(ap.parse_args())
|
||||
|
||||
print("[INFO] loading images...")
|
||||
imagePaths = list(paths.list_images(args["dataset"]))
|
||||
|
||||
sp = SimplePreprocessor(32, 32)
|
||||
sdl = SimpleDatasetLoader(preprocessors=[sp])
|
||||
(data, labels) = sdl.load(imagePaths, verbose=100)
|
||||
data = data.reshape((data.shape[0], 3072))
|
||||
|
||||
print("[INFO] features matrix:{:.1f}MB".format(data.nbytes / (1024 *1000.0)))
|
||||
|
||||
le = LabelEncoder()
|
||||
labels = le.fit_transform(labels)
|
||||
|
||||
(trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.25, random_state=42)
|
||||
|
||||
print("[INFO] evaluating K-NN classifier...")
|
||||
|
||||
model =KNeighborsClassifier(n_neighbors=3)
|
||||
model.fit(trainX, trainY)
|
||||
print(classification_report(testY, model.predict(testX), target_names=le.classes_))
|
||||
|
||||
Loading…
Reference in new issue