You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

516 lines
17 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import random
import re
import jieba as jieba
import pymysql
from django.http import HttpResponse
from django.shortcuts import render
from django.views.decorators.clickjacking import xframe_options_sameorigin
from jinja2 import Environment, FileSystemLoader
from pyecharts.faker import Faker
from pyecharts.globals import CurrentConfig
from django.http import HttpResponse
from pyecharts import options as opts
from pyecharts.charts import Bar, Pie
from pyecharts.charts import WordCloud
CurrentConfig.GLOBAL_ENV = Environment(loader=FileSystemLoader("./demo/templates"))
def home(request):
return render(request, 'home.html')
@xframe_options_sameorigin
def page_views(request, page):
# 解析路由,找到返回的页面
# current = request.path.split('/')[-1]
# return render(request, current + '.html')
return render(request, 'page' + str(page) + '.html')
def table_one(request):
x = []
xaxis = []
yaxis = []
conn = pymysql.connect(host='120.79.165.140',
user='kino',
passwd="student",
db='python_web_spider_DB')
cur = conn.cursor()
sql1 = "SELECT distinct 规格 from wh_xinfadi"
sql2 = "SELECT 规格,count(distinct 蔬菜种类) from wh_xinfadi group BY 规格"
cur.execute(sql1)
for sp in cur:
init = str(sp)
if '\'' in init:
this_kind = init.split('\'')[1]
else:
this_kind = init
if re.match(r'^([\u4e00-\u9fa5]+类)$', this_kind):
x.append(this_kind)
cur.execute(sql2)
for it in cur:
if it[0] in x:
xaxis.append(it[0])
yaxis.append(it[1])
c = (
Bar()
.extend_axis(xaxis)
.add_xaxis(xaxis)
.add_yaxis('北京新发地菜市', yaxis,)
.set_global_opts(
title_opts=opts.TitleOpts(
title="北京新发地菜市场",
subtitle="产品种类分析"
),
datazoom_opts=opts.DataZoomOpts(),
)
)
# conn.commit() # 记得提交
cur.close()
conn.close()
return HttpResponse(c.render_embed('北京新发地菜市场产品种类分析.html'))
def pie_views(requset):
data = [
['1990年及以前', 0],
['1991到1995年', 0],
['1996到2000年', 0],
['2001到2005年', 0],
['2006到2010年', 0],
['2011到2015年', 0],
['2016年至今', 0],
]
colors = []
while True:
color = random.choice(
[
"#c23531",
"#2f4554",
"#61a0a8",
"#d48265",
"#749f83",
"#ca8622",
"#bda29a",
"#6e7074",
"#546570",
"#c4ccd3",
"#f05b72",
"#444693",
"#726930",
"#b2d235",
"#6d8346",
"#ac6767",
"#1d953f",
"#6950a1",
]
)
if color not in colors:
colors.append(color)
if len(colors) == len(data):
break
conn = pymysql.connect(host='120.79.165.140',
user='kino',
passwd="student",
db='python_web_spider_DB')
cur = conn.cursor()
sql1 = "SELECT 上映年份 from wh_doubanmovie"
cur.execute(sql1)
for i in cur:
year = int(str(i).split('\'')[1])
if year <= 1990:
data[0][1] += 1
elif 1990 < year <= 1995:
data[1][1] += 1
elif 1995 < year <= 2000:
data[2][1] += 1
elif 2000 < year <= 2005:
data[3][1] += 1
elif 2005 < year <= 2010:
data[4][1] += 1
elif 2010 < year <= 2015:
data[5][1] += 1
elif 2015 < year:
data[6][1] += 1
c = (
Pie()
.add("", data)
.set_colors(colors)
# .add("", [list(z) for z in zip(Faker.choose(), Faker.values())])
# .set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple"])
.set_global_opts(title_opts=opts.TitleOpts(title=""))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
cur.close()
conn.close()
return HttpResponse(c.render_embed('豆瓣电影排行top250年份分布.html'))
def word_cloud(request):
x = []
data = []
delete = ['','','','','','','','','','','','',
'','','','','','','他们','','','','',]
conn = pymysql.connect(host='120.79.165.140',
user='kino',
passwd="student",
db='python_web_spider_DB')
cur = conn.cursor()
sql1 = "SELECT comments from xjh_wangyiyun"
cur.execute(sql1)
txt = ''
for i in cur:
ss = str(i)
if '\'' in ss:
txt += ss.split('\'')[1]
ls = jieba.lcut(txt)
for item in ls:
if re.match(r'^([\u4e00-\u9fa5]+)$', item):
x.append(item)
for item in x[::]:
t = (item, x.count(item)*3)
data.append(t)
while item in x:
x.remove(item)
for item in data:
if item[1] == 0 or item[0] in delete:
data.remove(item)
data.sort(key=lambda x: x in data)
c = (
WordCloud()
.add(series_name="歌曲:Mood 的评论高频词", data_pair=data, word_size_range=[10, 70])
.set_global_opts(
title_opts=opts.TitleOpts(
title="网易云歌曲评论词云", title_textstyle_opts=opts.TextStyleOpts(font_size=23)
),
tooltip_opts=opts.TooltipOpts(is_show=True),
)
)
cur.close()
conn.close()
return HttpResponse(c.render_embed('网易云歌曲评论词云.html'))
# 从这里写你们的爬虫函数,例:
# def spider_fun(url, web_name):
# pass
from bs4 import BeautifulSoup
import urllib.request,urllib.error #这里用urllib库实现requests库功能
import os
import re
import pandas as pd
#正则提取信息
#findLink = re.compile(r'href="(.*?)"') #提取网址
findTitle = re.compile(r'target="_blank">(.*?)</a>') #提取标题
findPrice = re.compile(r'<span class="highlight">(.*?)</span>') #提取价格
findTag = re.compile(r'/" target="_blank">(.*?)</a></div>') #提取商品类型
findPlace = re.compile(r'<div class="ad-item-detail">(.*?)</div>') #提取地址
def askURL(url): #访问网站获取信息
head = {
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36'
}
request = urllib.request.Request(url,headers=head)
html = ""
try:
response = urllib.request.urlopen(request)
html = response.read().decode('utf-8')
#print(html) #test
except urllib.error.URLError as e:
if hasattr(e,'code'):
print(e.code)
if hasattr(e,'reason'):
print(e.reason)
return html
def getData(baseurl): #提取需要的信息
datalist = []
for i in range(1,4): #调用访问网站函数,访问每一页的信息,这里只访问了几页
url = baseurl + str(i)
html = askURL(url)
soup = BeautifulSoup(html,"html.parser")
for item in soup.find_all('div',class_="media-body"): #提取信息
#print(item) #test
data = []
item = str(item)
title = re.findall(findTitle,item)[0]
link = re.findall(findPlace,item)[0]
price = re.findall(findPrice,item)[0]
tag = re.findall(findTag,item)[0]
data.append(title)
data.append(link)
data.append(price)
data.append(tag)
datalist.append(data)
return datalist
def saveData(savepath,datalist,web_name): #保存文件
name = ["标题","地址","价格","类型"]
file = pd.DataFrame(columns=name,data=datalist) #整合表头和数据
file.to_csv(savepath+'/lyh_tiaozaomarket.csv') #保存至当前路径命名为xxx.csv
print('已保存%s信息' % web_name)
'''---------代码开始的地方---------'''
def begin_spider(url, web_name):
url='https://guilin.baixing.com/ershou/?page='
web_name='桂林百姓网二手市场'
savepath = os.getcwd() #获取当前路径作为保存路径
datalist = getData(url)
saveData(savepath,datalist,web_name)
import csv
from lxml import etree
import requests
def begin_spider(url, web_name, web=1):
url = "https://guilin.zbj.com/search/f/?type=new&kw=saas"
# 设置headers防止UA验证Host为要爬取的域名,通过浏览器F12获取User-Agent
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36 Edg/90.0.818.51"
}
response = requests.get(url=url, headers=headers)
html = etree.HTML(response.text) #通过etree解析文本内容
divs = html.xpath("/html/body/div[6]/div/div/div[2]/div[6]/div[1]/div") #通过浏览器的F12获取对应页面的xpath
f = open("data.csv", 'w', encoding='utf-8')
csv_writer = csv.writer(f)
for div in divs:
price_temp = div.xpath("./div/div/a[1]/div[2]/div[1]/span[1]/text()") #找到价格位置的Xpath
title_temp = div.xpath("./div/div/a[1]/div[2]/div[2]/p/text()")#找到项目名称位置的Xpath
Company_temp = div.xpath("./div/div/a[2]/div[1]/p/text()")#找到公司名字位置的Xpath
Address_temp = div.xpath("./div/div/a[2]/div[1]/div/span/text()")#找到公司地点位置的Xpath
# 以下均为对数据的处理
if len(price_temp) != 0 and len(title_temp) != 0 and len(Company_temp) != 0 and len(Address_temp) != 0:#为了处理一些较为特殊的数据,所以加次判断
price = price_temp[0].strip("¥") #去除价格的符号
title = "SAAS".join(title_temp) #将项目名称做美化
Company = Company_temp[0] #去除括号
Address = Address_temp[0] #去除括号
csv_writer.writerow([price, title, Company, Address]) #写入文件
def main():
begin_spider("https://guilin.zbj.com/search/f/?type=new&kw=saas", "猪八戒")
'''
if __name__ == '__main__':
main()
'''
import json
import time
import requests
# 设置headers防止UA验证Host为要爬取的域名,通过浏览器F12获取User-Agent
headers = {
'Host': 'music.163.com',
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36 Edg/90.0.818.51"
}
def begin_spider(page, url, web_name):
"""
获取评论信息
"""
url = 'https://music.163.com/api/v1/resource/comments/R_SO_4_483671599?limit=10&offset=' + str(page) #调用网易云音乐评论区的api
response = requests.get(url=url, headers=headers)#获取请求
print(response.status_code)
# 将字符串转为json格式
result = json.loads(response.text)
items = result['comments'] #从一大堆的文字中提取评论区的内容这个地方不懂得话可以debug看一下
for item in items: #开始提取评论区内容
# 用户名
user_name = item['user']['nickname'].replace(',', '') #从json串获取到用户名
# 评论内容
comment = item['content'].strip().replace('', '').replace(',', '') #从json中获取评论内容
# 评论点赞数
praise = str(item['likedCount']) #从json中获取评论点赞数
# 评论时间
date = time.localtime(int(str(item['time'])[:10])) #从json中获取评论时间
date = time.strftime("%Y-%m-%d %H:%M:%S", date)
with open('test.csv', 'a', encoding='utf-8-sig') as f: #保存到文件中
f.write(user_name + ',' + comment + ',' + praise + ',' + date + '\n')
f.close()
def main_a():
for i in range(0, 100, 20):
begin_spider(i,"https://music.163.com/","网易云")
time.sleep(1)
'''
if __name__ == '__main__':
main()
'''
import re # 正则表达式进行文字匹配
from bs4 import BeautifulSoup # 网页解析获取数据
import urllib.error,urllib.request
import xlwt # 进行excel操作
def main_b():
baseurl = "https://movie.douban.com/top250?start="
# 1.爬取网页
name= '豆瓣top250'
datalist = begin_spider(baseurl, name)
savepath = "豆瓣电影top25.xls"
dbpath = "movie.db"
# 3.保存数据
saveData(datalist, savepath)
# 影片详情链接
findLink = re.compile(r'<a href="(.*?)">') # 创建正则表达式对象,表示规则(字符串模式)
# 影片图片
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S) # re.S 让换行符包含在字符中
# 影片片名
findTitle = re.compile(r'<span class="title">(.*)</span>')
# 影评
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
# 评价人数
findJudge = re.compile(r'<span>(\d*)人评价</span>')
# 找到概况
findInq = re.compile(r'<span class="inq">(.*?)</span>')
# 找到影片相关内容
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)
# 爬取网页
def begin_spider(baseurl, a):
datalist = []
for i in range(0, 1): # 调用获取页面信息的函数1次
url = baseurl + str(i * 25)
html = askURL(url) # 保存获取到的网页源码
# 2.逐一解析数据
soup = BeautifulSoup(html, "html.parser")
for item in soup.find_all('div', class_="item"): # 查找符合要求的字符串,形成列表
# print(item) # 测试查看电影item信息
data = [] # 保存一部电影的所有信息
item = str(item)
link = re.findall(findLink, item)[0] # re库用来查找通过正则表达式查找指定字符串
data.append(link) # 添加链接
imgSrc = re.findall(findImgSrc, item)[0]
data.append(imgSrc) # 添加图片
titles = re.findall(findTitle, item)
if len(titles) == 2:
ctitle = titles[0] # 添加中文名
data.append(ctitle)
otitle = titles[1].replace("/", "") # 去掉无关符号
data.append(otitle) # 添加外国名
else:
data.append(titles[0])
data.append(' ') # 外国名留空
rating = re.findall(findRating, item)[0]
data.append(rating) # 添加评分
judgeNum = re.findall(findJudge, item)[0]
data.append(judgeNum) # 添加评价人数
inq = re.findall(findInq, item)[0]
if len(inq) != 0:
inq = inq[0].replace("", " ") # 去掉句号
data.append(inq) # 添加概况
else:
data.append(" ") # 留空
bd = re.findall(findBd, item)[0]
bd = re.sub('<br(\s+)?/>(\s+)', " ", bd) # 去掉<br/>
bd = re.sub('/', " ", bd) # 替换/
data.append(bd.strip()) # 去掉前后空格
print(data)
datalist.append(data) # 把处理好的一部电影信息放入datalist
return datalist
# 得到指定一个URL的网页内容
def askURL(url):
head = { # 模拟浏览器头部信息,向网址服务器发送消息
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit / 537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36L, like Gecko) Chrome/90.0.4430.212 Safari/537.36"
}
# 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器,浏览器(本质上是告诉浏览器,我们可以接收什么水平的信息
request = urllib.request.Request(url, headers=head)
html = ""
# 异常处理
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8")
except urllib.error.URLError as e:
if hasattr((e, "code")):
print(e.code)
if hasattr(e, "reason"):
print(e.reason)
return html
# 保存数据
def saveData(datalist, savepath):
print("save...")
book = xlwt.Workbook(encoding="utf-8")
sheet = book.add_sheet('豆瓣电影top25')
col = ("电影链接", "图片链接", "影片中文名", "影片外文名", "评分", "评价数", "概况", "相关信息")
for i in range(0, 8):
sheet.write(0, i , col[i])
for i in range(0, 25):
print("%d"%(i+1))
data = datalist[i]
for j in range(0, 8):
sheet.write(i+1, j, data[j])
book.save(savepath)
'''
if __name__ == "__main__":
main()
print("爬取完毕!")
'''