You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

309 lines
10 KiB

/*
MD5 collision generator
=======================
Source code files:
block0.cpp
block1.cpp
main.cpp
main.hpp
md5.cpp
block1wang.cpp
block1stevens00.cpp
block1stevens01.cpp
block1stevens10.cpp
block1stevens11.cpp
Win32 executable:
fastcoll_v1.0.0.5.exe
Version
=======
version 1.0.0.5, April 2006.
Copyright
=========
© M. Stevens, 2006. All rights reserved.
Disclaimer
==========
This software is provided as is. Use is at the user's risk.
No guarantee whatsoever is given on how it may function or malfunction.
Support cannot be expected.
This software is meant for scientific and educational purposes only.
It is forbidden to use it for other than scientific or educational purposes.
In particular, commercial and malicious use is not allowed.
Further distribution of this software, by whatever means, is not allowed
without our consent.
This includes publication of source code or executables in printed form,
on websites, newsgroups, CD-ROM's, etc.
Changing the (source) code without our consent is not allowed.
In all versions of the source code this disclaimer, the copyright
notice and the version number should be present.
*/
#include <iostream>
#include <vector>
#include "main.hpp"
void find_block1_wang(uint32 block[], const uint32 IV[])
{
uint32 Q[68] = { IV[0], IV[3], IV[2], IV[1] };
std::vector<uint32> q4mask(1<<6);
for (unsigned k = 0; k < q4mask.size(); ++k)
q4mask[k] = ((k<<13) ^ (k<<19)) & 0x01c0e000;
std::vector<uint32> q9mask(1<<5), q10mask(1<<5);
for (unsigned k = 0; k < q9mask.size(); ++k)
{
uint32 msk = (k<<5) ^ (k<<13) ^ (k<<17) ^ (k<<24);
q9mask[k] = msk & 0x00084000;
q10mask[k] = msk & 0x18000020;
}
std::vector<uint32> q9mask2(1<<10);
for (unsigned k = 0; k < q9mask2.size(); ++k)
q9mask2[k] = ((k<<1) ^ (k<<7) ^ (k<<14) ^ (k<<15) ^ (k<<22)) & 0x6074041c;
while (true)
{
uint32 aa = Q[Qoff] & 0x80000000;
uint32 bb = 0x80000000 ^ aa;
Q[Qoff + 2] = (xrng64() & 0x71de7799) | 0x0c008840 | bb;
Q[Qoff + 3] = (xrng64() & 0x01c06601) | 0x3e1f0966 | (Q[Qoff + 2] & 0x80000018);
Q[Qoff + 4] = 0x3a040010 | (Q[Qoff + 3] & 0x80000601);
Q[Qoff + 5] = (xrng64() & 0x03c0e000) | 0x482f0e50 | aa;
Q[Qoff + 6] = (xrng64() & 0x600c0000) | 0x05e2ec56 | aa;
Q[Qoff + 7] = (xrng64() & 0x604c203e) | 0x16819e01 | bb | (Q[Qoff + 6] & 0x01000000);
Q[Qoff + 8] = (xrng64() & 0x604c7c1c) | 0x043283e0 | (Q[Qoff + 7] & 0x80000002);
Q[Qoff + 9] = (xrng64() & 0x00002800) | 0x1c0101c1 | (Q[Qoff + 8] & 0x80001000);
Q[Qoff + 10] = 0x078bcbc0 | bb;
Q[Qoff + 11] = (xrng64() & 0x07800000) | 0x607dc7df | bb;
Q[Qoff + 12] = (xrng64() & 0x00f00f7f) | 0x00081080 | (Q[Qoff + 11] & 0xe7000000);
Q[Qoff + 13] = (xrng64() & 0x00701f77) | 0x3f0fe008 | aa;
Q[Qoff + 14] = (xrng64() & 0x00701f77) | 0x408be088 | aa;
Q[Qoff + 15] = (xrng64() & 0x00ff3ff7) | 0x7d000000;
Q[Qoff + 16] = (xrng64() & 0x4ffdffff) | 0x20000000 | (~Q[Qoff + 15] & 0x00020000);
MD5_REVERSE_STEP(5, 0x4787c62a, 12);
MD5_REVERSE_STEP(6, 0xa8304613, 17);
MD5_REVERSE_STEP(7, 0xfd469501, 22);
MD5_REVERSE_STEP(11, 0x895cd7be, 22);
MD5_REVERSE_STEP(14, 0xa679438e, 17);
MD5_REVERSE_STEP(15, 0x49b40821, 22);
const uint32 tt17 = GG(Q[Qoff + 16], Q[Qoff + 15], Q[Qoff + 14]) + Q[Qoff + 13] + 0xf61e2562;
const uint32 tt18 = Q[Qoff + 14] + 0xc040b340 + block[6];
const uint32 tt19 = Q[Qoff + 15] + 0x265e5a51 + block[11];
const uint32 tt0 = FF(Q[Qoff + 0], Q[Qoff - 1], Q[Qoff - 2]) + Q[Qoff - 3] + 0xd76aa478;
const uint32 tt1 = Q[Qoff - 2] + 0xe8c7b756;
const uint32 q1a = 0x04200040 | (Q[Qoff + 2] & 0xf01e1080);
unsigned counter = 0;
while (counter < (1 << 12))
{
++counter;
uint32 q1 = q1a | (xrng64() & 0x01c0e71f);
uint32 m1 = Q[Qoff+2] - q1;
m1 = RR(m1, 12) - FF(q1, Q[Qoff+0], Q[Qoff-1]) - tt1;
const uint32 q16 = Q[Qoff+16];
uint32 q17 = tt17 + m1;
q17 = RL(q17, 5) + q16;
if (0x40000000 != ((q17^q16) & 0xc0008008)) continue;
if (0 != (q17 & 0x00020000)) continue;
uint32 q18 = GG(q17, q16, Q[Qoff+15]) + tt18;
q18 = RL(q18, 9); q18 += q17;
if (0x00020000 != ((q18^q17) & 0xa0020000)) continue;
uint32 q19 = GG(q18, q17, q16) + tt19;
q19 = RL(q19, 14); q19 += q18;
if (0 != (q19 & 0x80020000)) continue;
uint32 m0 = q1 - Q[Qoff + 0];
m0 = RR(m0, 7) - tt0;
uint32 q20 = GG(q19, q18, q17) + q16 + 0xe9b6c7aa + m0;
q20 = RL(q20, 20); q20 += q19;
if (0x00040000 != ((q20^q19) & 0x80040000)) continue;
Q[Qoff + 1] = q1;
Q[Qoff + 17] = q17;
Q[Qoff + 18] = q18;
Q[Qoff + 19] = q19;
Q[Qoff + 20] = q20;
block[0] = m0;
block[1] = m1;
MD5_REVERSE_STEP(2, 0x242070db, 17);
counter = 0;
break;
}
if (counter != 0)
continue;
const uint32 q4b = Q[Qoff + 4];
const uint32 q9b = Q[Qoff + 9];
const uint32 q10b = Q[Qoff + 10];
const uint32 tt21 = GG(Q[Qoff+20], Q[Qoff+19], Q[Qoff+18]) + Q[Qoff+17] + 0xd62f105d;
counter = 0;
while (counter < (1<<6))
{
Q[Qoff + 4] = q4b ^ q4mask[counter];
++counter;
MD5_REVERSE_STEP(5, 0x4787c62a, 12);
uint32 q21 = tt21 + block[5];
q21 = RL(q21, 5); q21 += Q[Qoff+20];
if (0 != ((q21^Q[Qoff+20]) & 0x80020000)) continue;
Q[Qoff+21] = q21;
MD5_REVERSE_STEP(3, 0xc1bdceee, 22);
MD5_REVERSE_STEP(4, 0xf57c0faf, 7);
MD5_REVERSE_STEP(7, 0xfd469501, 22);
const uint32 tt10 = Q[Qoff + 7] + 0xffff5bb1;
const uint32 tt22 = GG(Q[Qoff + 21], Q[Qoff + 20], Q[Qoff + 19]) + Q[Qoff + 18] + 0x02441453;
const uint32 tt23 = Q[Qoff + 19] + 0xd8a1e681 + block[15];
const uint32 tt24 = Q[Qoff + 20] + 0xe7d3fbc8 + block[4];
unsigned counter2 = 0;
while (counter2 < (1<<5))
{
uint32 q10 = q10b ^ q10mask[counter2];
uint32 m10 = RR(Q[Qoff+11]-q10,17);
uint32 q9 = q9b ^ q9mask[counter2];
++counter2;
m10 -= FF(q10, q9, Q[Qoff+8]) + tt10;
uint32 aa = Q[Qoff + 21];
uint32 dd = tt22+m10; dd = RL(dd, 9) + aa;
if (0 != (dd & 0x80000000)) continue;
uint32 bb = Q[Qoff + 20];
uint32 cc = tt23 + GG(dd, aa, bb);
if (0 != (cc & 0x20000)) continue;
cc = RL(cc, 14) + dd;
if (0 != (cc & 0x80000000)) continue;
bb = tt24 + GG(cc, dd, aa); bb = RL(bb, 20) + cc;
if (0 == (bb & 0x80000000)) continue;
block[10] = m10;
Q[Qoff + 9] = q9;
Q[Qoff + 10] = q10;
MD5_REVERSE_STEP(13, 0xfd987193, 12);
for (unsigned k9 = 0; k9 < (1<<10);)
{
uint32 a = aa, b = bb, c = cc, d = dd;
Q[Qoff + 9] = q9 ^ q9mask2[k9]; ++k9;
MD5_REVERSE_STEP(8, 0x698098d8, 7);
MD5_REVERSE_STEP(9, 0x8b44f7af, 12);
MD5_REVERSE_STEP(12, 0x6b901122, 7);
MD5_STEP(GG, a, b, c, d, block[9], 0x21e1cde6, 5);
MD5_STEP(GG, d, a, b, c, block[14], 0xc33707d6, 9);
MD5_STEP(GG, c, d, a, b, block[3], 0xf4d50d87, 14);
MD5_STEP(GG, b, c, d, a, block[8], 0x455a14ed, 20);
MD5_STEP(GG, a, b, c, d, block[13], 0xa9e3e905, 5);
MD5_STEP(GG, d, a, b, c, block[2], 0xfcefa3f8, 9);
MD5_STEP(GG, c, d, a, b, block[7], 0x676f02d9, 14);
MD5_STEP(GG, b, c, d, a, block[12], 0x8d2a4c8a, 20);
MD5_STEP(HH, a, b, c, d, block[5], 0xfffa3942, 4);
MD5_STEP(HH, d, a, b, c, block[8], 0x8771f681, 11);
c += HH(d, a, b) + block[11] + 0x6d9d6122;
if (0 == (c & (1 << 15)))
continue;
c = (c<<16 | c>>16) + d;
MD5_STEP(HH, b, c, d, a, block[14], 0xfde5380c, 23);
MD5_STEP(HH, a, b, c, d, block[1], 0xa4beea44, 4);
MD5_STEP(HH, d, a, b, c, block[4], 0x4bdecfa9, 11);
MD5_STEP(HH, c, d, a, b, block[7], 0xf6bb4b60, 16);
MD5_STEP(HH, b, c, d, a, block[10], 0xbebfbc70, 23);
MD5_STEP(HH, a, b, c, d, block[13], 0x289b7ec6, 4);
MD5_STEP(HH, d, a, b, c, block[0], 0xeaa127fa, 11);
MD5_STEP(HH, c, d, a, b, block[3], 0xd4ef3085, 16);
MD5_STEP(HH, b, c, d, a, block[6], 0x04881d05, 23);
MD5_STEP(HH, a, b, c, d, block[9], 0xd9d4d039, 4);
MD5_STEP(HH, d, a, b, c, block[12], 0xe6db99e5, 11);
MD5_STEP(HH, c, d, a, b, block[15], 0x1fa27cf8, 16);
MD5_STEP(HH, b, c, d, a, block[2], 0xc4ac5665, 23);
if (0 != ((b^d) & 0x80000000))
continue;
MD5_STEP(II, a, b, c, d, block[0], 0xf4292244, 6);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, d, a, b, c, block[7], 0x432aff97, 10);
if (0 == ((b^d) >> 31)) continue;
MD5_STEP(II, c, d, a, b, block[14], 0xab9423a7, 15);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, b, c, d, a, block[5], 0xfc93a039, 21);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, a, b, c, d, block[12], 0x655b59c3, 6);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, d, a, b, c, block[3], 0x8f0ccc92, 10);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, c, d, a, b, block[10], 0xffeff47d, 15);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, b, c, d, a, block[1], 0x85845dd1, 21);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, a, b, c, d, block[8], 0x6fa87e4f, 6);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, d, a, b, c, block[15], 0xfe2ce6e0, 10);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, c, d, a, b, block[6], 0xa3014314, 15);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, b, c, d, a, block[13], 0x4e0811a1, 21);
if (0 == ((b^d) >> 31)) continue;
MD5_STEP(II, a, b, c, d, block[4], 0xf7537e82, 6);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, d, a, b, c, block[11], 0xbd3af235, 10);
if (0 != ((b^d) >> 31)) continue;
MD5_STEP(II, c, d, a, b, block[2], 0x2ad7d2bb, 15);
if (0 != ((a^c) >> 31)) continue;
MD5_STEP(II, b, c, d, a, block[9], 0xeb86d391, 21);
std::cout << "." << std::flush;
uint32 block2[16];
uint32 IV1[4], IV2[4];
for (int t = 0; t < 4; ++t)
{
IV1[t] = IV[t];
IV2[t] = IV[t] + (1 << 31);
}
IV2[1] += (1 << 25);
IV2[2] += (1 << 25);
IV2[3] += (1 << 25);
for (int t = 0; t < 16; ++t)
block2[t] = block[t];
block2[4] += 1<<31;
block2[11] -= 1<<15;
block2[14] += 1<<31;
md5_compress(IV1, block);
md5_compress(IV2, block2);
if (IV2[0]==IV1[0] && IV2[1]==IV1[1] && IV2[2]==IV1[2] && IV2[3]==IV1[3])
return;
if (IV2[0] != IV1[0])
std::cout << "!" << std::flush;
}
}
}
}
}