# coding: utf-8 from __future__ import print_function import os import time import random from PIL import Image import tensorflow as tf import numpy as np from utils import * from model import * from glob import glob batch_size = 4 patch_size = 384 config = tf.ConfigProto() config.gpu_options.allow_growth = True sess=tf.Session(config=config) #the input of decomposition net input_decom = tf.placeholder(tf.float32, [None, None, None, 3], name='input_decom') #restoration input input_low_r = tf.placeholder(tf.float32, [None, None, None, 3], name='input_low_r') input_low_i = tf.placeholder(tf.float32, [None, None, None, 1], name='input_low_i') input_high_r = tf.placeholder(tf.float32, [None, None, None, 3], name='input_high_r') [R_decom, I_decom] = DecomNet_simple(input_decom) #the output of decomposition network decom_output_R = R_decom decom_output_I = I_decom output_r = Restoration_net(input_low_r, input_low_i) #define loss def grad_loss(input_r_low, input_r_high): input_r_low_gray = tf.image.rgb_to_grayscale(input_r_low) input_r_high_gray = tf.image.rgb_to_grayscale(input_r_high) x_loss = tf.square(gradient(input_r_low_gray, 'x') - gradient(input_r_high_gray, 'x')) y_loss = tf.square(gradient(input_r_low_gray, 'y') - gradient(input_r_high_gray, 'y')) grad_loss_all = tf.reduce_mean(x_loss + y_loss) return grad_loss_all def ssim_loss(output_r, input_high_r): output_r_1 = output_r[:,:,:,0:1] input_high_r_1 = input_high_r[:,:,:,0:1] ssim_r_1 = tf_ssim(output_r_1, input_high_r_1) output_r_2 = output_r[:,:,:,1:2] input_high_r_2 = input_high_r[:,:,:,1:2] ssim_r_2 = tf_ssim(output_r_2, input_high_r_2) output_r_3 = output_r[:,:,:,2:3] input_high_r_3 = input_high_r[:,:,:,2:3] ssim_r_3 = tf_ssim(output_r_3, input_high_r_3) ssim_r = (ssim_r_1 + ssim_r_2 + ssim_r_3)/3.0 loss_ssim1 = 1-ssim_r return loss_ssim1 loss_square = tf.reduce_mean(tf.square(output_r - input_high_r)) loss_ssim = ssim_loss(output_r, input_high_r) loss_grad = grad_loss(output_r, input_high_r) loss_restoration = loss_square + loss_grad + loss_ssim ### initialize lr = tf.placeholder(tf.float32, name='learning_rate') global_step = tf.get_variable('global_step', [], dtype=tf.int32, initializer=tf.constant_initializer(0), trainable=False) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) optimizer = tf.train.AdamOptimizer(learning_rate=lr, name='AdamOptimizer') with tf.control_dependencies(update_ops): grads = optimizer.compute_gradients(loss_restoration) train_op_restoration = optimizer.apply_gradients(grads, global_step=global_step) var_Decom = [var for var in tf.trainable_variables() if 'DecomNet' in var.name] var_restoration = [var for var in tf.trainable_variables() if 'Restoration_net' in var.name] saver_restoration = tf.train.Saver(var_list=var_restoration) saver_Decom = tf.train.Saver(var_list = var_Decom) sess.run(tf.global_variables_initializer()) print("[*] Initialize model successfully...") ### load data ### Based on the decomposition net, we first get the decomposed reflectance maps ### and illumination maps, then train the restoration net. ###train_data train_low_data = [] train_high_data = [] train_low_data_names = glob('./LOLdataset/our485/low/*.png') train_low_data_names.sort() train_high_data_names = glob('./LOLdataset/our485/high/*.png') train_high_data_names.sort() assert len(train_low_data_names) == len(train_high_data_names) print('[*] Number of training data: %d' % len(train_low_data_names)) for idx in range(len(train_low_data_names)): low_im = load_images(train_low_data_names[idx]) train_low_data.append(low_im) high_im = load_images(train_high_data_names[idx]) train_high_data.append(high_im) eval_low_data = [] eval_low_data_names = glob('./LOLdataset/eval15/low/*.png') eval_low_data_names.sort() for idx in range(len(eval_low_data_names)): eval_low_im = load_images(eval_low_data_names[idx]) eval_low_data.append(eval_low_im) pre_decom_checkpoint_dir = './checkpoint/decom_net_train/' ckpt_pre=tf.train.get_checkpoint_state(pre_decom_checkpoint_dir) if ckpt_pre: print('loaded '+ckpt_pre.model_checkpoint_path) saver_Decom.restore(sess,ckpt_pre.model_checkpoint_path) else: print('No pre_decom_net checkpoint!') decomposed_low_r_data_480 = [] decomposed_low_i_data_480 = [] decomposed_high_r_data_480 = [] for idx in range(len(train_low_data)): input_low = np.expand_dims(train_low_data[idx], axis=0) RR, II = sess.run([decom_output_R, decom_output_I], feed_dict={input_decom: input_low}) RR0 = np.squeeze(RR) II0 = np.squeeze(II) print(idx, RR0.shape, II0.shape) decomposed_low_r_data_480.append(RR0) decomposed_low_i_data_480.append(II0) for idx in range(len(train_high_data)): input_high = np.expand_dims(train_high_data[idx], axis=0) RR2, II2 = sess.run([decom_output_R, decom_output_I], feed_dict={input_decom: input_high}) ### To improve the constrast, we slightly change the decom_r_high by using decom_r_high**1.2 RR02 = np.squeeze(RR2**1.2) print(idx, RR02.shape) decomposed_high_r_data_480.append(RR02) decomposed_eval_low_r_data = [] decomposed_eval_low_i_data = [] for idx in range(len(eval_low_data)): input_eval = np.expand_dims(eval_low_data[idx], axis=0) RR3, II3 = sess.run([decom_output_R, decom_output_I], feed_dict={input_decom: input_eval}) RR03 = np.squeeze(RR3) II03 = np.squeeze(II3) print(idx, RR03.shape, II03.shape) decomposed_eval_low_r_data.append(RR03) decomposed_eval_low_i_data.append(II03) eval_restoration_low_r_data = decomposed_low_r_data_480[467:480] + decomposed_eval_low_r_data[0:15] eval_restoration_low_i_data = decomposed_low_i_data_480[467:480] + decomposed_eval_low_i_data[0:15] train_restoration_low_r_data = decomposed_low_r_data_480[0:466] train_restoration_low_i_data = decomposed_low_i_data_480[0:466] train_restoration_high_r_data = decomposed_high_r_data_480[0:466] #train_restoration_high_i_data = train_restoration_high_i_data_480[0:466] print(len(train_restoration_high_r_data), len(train_restoration_low_r_data),len(train_restoration_low_i_data)) print(len(eval_restoration_low_r_data),len(eval_restoration_low_i_data)) assert len(train_restoration_high_r_data) == len(train_restoration_low_r_data) assert len(train_restoration_low_i_data) == len(train_restoration_low_r_data) print('[*] Number of training data: %d' % len(train_restoration_high_r_data)) learning_rate = 0.0001 def lr_schedule(epoch): initial_lr = learning_rate if epoch<=800: lr = initial_lr elif epoch<=1250: lr = initial_lr/2 elif epoch<=1500: lr = initial_lr/4 else: lr = initial_lr/10 return lr epoch = 1000 sample_dir = './Restoration_net_train/' if not os.path.isdir(sample_dir): os.makedirs(sample_dir) eval_every_epoch = 50 train_phase = 'Restoration' numBatch = len(train_restoration_low_r_data) // int(batch_size) train_op = train_op_restoration train_loss = loss_restoration saver = saver_restoration checkpoint_dir = './checkpoint/Restoration_net_train/' if not os.path.isdir(checkpoint_dir): os.makedirs(checkpoint_dir) ckpt=tf.train.get_checkpoint_state(checkpoint_dir) if ckpt: print('loaded '+ckpt.model_checkpoint_path) saver_restoration.restore(sess,ckpt.model_checkpoint_path) else: print('No pre_restoration_net checkpoint!') start_step = 0 start_epoch = 0 iter_num = 0 print("[*] Start training for phase %s, with start epoch %d start iter %d : " % (train_phase, start_epoch, iter_num)) start_time = time.time() image_id = 0 for epoch in range(start_epoch, epoch): for batch_id in range(start_step, numBatch): batch_input_low_r = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32") batch_input_low_i = np.zeros((batch_size, patch_size, patch_size, 1), dtype="float32") batch_input_high_r = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32") for patch_id in range(batch_size): h, w, _ = train_restoration_low_r_data[image_id].shape x = random.randint(0, h - patch_size) y = random.randint(0, w - patch_size) i_low_expand = np.expand_dims(train_restoration_low_i_data[image_id], axis = 2) rand_mode = random.randint(0, 7) batch_input_low_r[patch_id, :, :, :] = data_augmentation(train_restoration_low_r_data[image_id][x : x+patch_size, y : y+patch_size, :] , rand_mode)#+ np.random.normal(0, 0.1, (patch_size,patch_size,3)) , rand_mode) batch_input_low_i[patch_id, :, :, :] = data_augmentation(i_low_expand[x : x+patch_size, y : y+patch_size, :] , rand_mode)#+ np.random.normal(0, 0.1, (patch_size,patch_size,3)) , rand_mode) batch_input_high_r[patch_id, :, :, :] = data_augmentation(train_restoration_high_r_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode) image_id = (image_id + 1) % len(train_restoration_low_r_data) if image_id == 0: tmp = list(zip(train_restoration_low_r_data, train_restoration_low_i_data, train_restoration_high_r_data)) random.shuffle(tmp) train_restoration_low_r_data, train_restoration_low_i_data, train_restoration_high_r_data = zip(*tmp) _, loss = sess.run([train_op, train_loss], feed_dict={input_low_r: batch_input_low_r,input_low_i: batch_input_low_i,\ input_high_r: batch_input_high_r, lr: lr_schedule(epoch)}) print("%s Epoch: [%2d] [%4d/%4d] time: %4.4f, loss: %.6f" \ % (train_phase, epoch + 1, batch_id + 1, numBatch, time.time() - start_time, loss)) iter_num += 1 if (epoch + 1) % eval_every_epoch == 0: print("[*] Evaluating for phase %s / epoch %d..." % (train_phase, epoch + 1)) for idx in range(len(eval_restoration_low_r_data)): input_uu_r = eval_restoration_low_r_data[idx] input_low_eval_r = np.expand_dims(input_uu_r, axis=0) input_uu_i = eval_restoration_low_i_data[idx] input_low_eval_i = np.expand_dims(input_uu_i, axis=0) input_low_eval_ii = np.expand_dims(input_low_eval_i, axis=3) result_1 = sess.run(output_r, feed_dict={input_low_r: input_low_eval_r, input_low_i: input_low_eval_ii}) save_images(os.path.join(sample_dir, 'eval_%d_%d.png' % ( idx + 1, epoch + 1)), input_uu_r, result_1) saver.save(sess, checkpoint_dir + 'model.ckpt', global_step=epoch) print("[*] Finish training for phase %s." % train_phase)