# coding: utf-8 from __future__ import print_function import os, time, random import tensorflow as tf from PIL import Image import numpy as np from utils import * from model import * from glob import glob batch_size = 10 patch_size = 48 sess = tf.Session() input_low = tf.placeholder(tf.float32, [None, None, None, 3], name='input_low') input_high = tf.placeholder(tf.float32, [None, None, None, 3], name='input_high') [R_low, I_low] = DecomNet_simple(input_low) [R_high, I_high] = DecomNet_simple(input_high) I_low_3 = tf.concat([I_low, I_low, I_low], axis=3) I_high_3 = tf.concat([I_high, I_high, I_high], axis=3) #network output output_R_low = R_low output_R_high = R_high output_I_low = I_low_3 output_I_high = I_high_3 # define loss def mutual_i_loss(input_I_low, input_I_high): low_gradient_x = gradient(input_I_low, "x") high_gradient_x = gradient(input_I_high, "x") x_loss = (low_gradient_x + high_gradient_x)* tf.exp(-10*(low_gradient_x+high_gradient_x)) low_gradient_y = gradient(input_I_low, "y") high_gradient_y = gradient(input_I_high, "y") y_loss = (low_gradient_y + high_gradient_y) * tf.exp(-10*(low_gradient_y+high_gradient_y)) mutual_loss = tf.reduce_mean( x_loss + y_loss) return mutual_loss def mutual_i_input_loss(input_I_low, input_im): input_gray = tf.image.rgb_to_grayscale(input_im) low_gradient_x = gradient(input_I_low, "x") input_gradient_x = gradient(input_gray, "x") x_loss = tf.abs(tf.div(low_gradient_x, tf.maximum(input_gradient_x, 0.01))) low_gradient_y = gradient(input_I_low, "y") input_gradient_y = gradient(input_gray, "y") y_loss = tf.abs(tf.div(low_gradient_y, tf.maximum(input_gradient_y, 0.01))) mut_loss = tf.reduce_mean(x_loss + y_loss) return mut_loss recon_loss_low = tf.reduce_mean(tf.abs(R_low * I_low_3 - input_low)) recon_loss_high = tf.reduce_mean(tf.abs(R_high * I_high_3 - input_high)) equal_R_loss = tf.reduce_mean(tf.abs(R_low - R_high)) i_mutual_loss = mutual_i_loss(I_low, I_high) i_input_mutual_loss_high = mutual_i_input_loss(I_high, input_high) i_input_mutual_loss_low = mutual_i_input_loss(I_low, input_low) loss_Decom = 1*recon_loss_high + 1*recon_loss_low \ + 0.01 * equal_R_loss + 0.2*i_mutual_loss \ + 0.15* i_input_mutual_loss_high + 0.15* i_input_mutual_loss_low ### lr = tf.placeholder(tf.float32, name='learning_rate') optimizer = tf.train.AdamOptimizer(learning_rate=lr, name='AdamOptimizer') var_Decom = [var for var in tf.trainable_variables() if 'DecomNet' in var.name] train_op_Decom = optimizer.minimize(loss_Decom, var_list = var_Decom) sess.run(tf.global_variables_initializer()) saver_Decom = tf.train.Saver(var_list = var_Decom) print("[*] Initialize model successfully...") #load data ###train_data train_low_data = [] train_high_data = [] train_low_data_names = glob('./LOLdataset/our485/low/*.png') train_low_data_names.sort() train_high_data_names = glob('./LOLdataset/our485/high/*.png') train_high_data_names.sort() assert len(train_low_data_names) == len(train_high_data_names) print('[*] Number of training data: %d' % len(train_low_data_names)) for idx in range(len(train_low_data_names)): low_im = load_images(train_low_data_names[idx]) train_low_data.append(low_im) high_im = load_images(train_high_data_names[idx]) train_high_data.append(high_im) ###eval_data eval_low_data = [] eval_high_data = [] eval_low_data_name = glob('./LOLdataset/eval15/low/*.png') eval_low_data_name.sort() eval_high_data_name = glob('./LOLdataset/eval15/high/*.png*') eval_high_data_name.sort() for idx in range(len(eval_low_data_name)): eval_low_im = load_images(eval_low_data_name[idx]) eval_low_data.append(eval_low_im) eval_high_im = load_images(eval_high_data_name[idx]) eval_high_data.append(eval_high_im) epoch = 2000 learning_rate = 0.0001 sample_dir = './Decom_net_train/' if not os.path.isdir(sample_dir): os.makedirs(sample_dir) eval_every_epoch = 200 train_phase = 'decomposition' numBatch = len(train_low_data) // int(batch_size) train_op = train_op_Decom train_loss = loss_Decom saver = saver_Decom checkpoint_dir = './checkpoint/decom_net_train/' if not os.path.isdir(checkpoint_dir): os.makedirs(checkpoint_dir) ckpt=tf.train.get_checkpoint_state(checkpoint_dir) if ckpt: print('loaded '+ckpt.model_checkpoint_path) saver.restore(sess,ckpt.model_checkpoint_path) start_step = 0 start_epoch = 0 iter_num = 0 print("[*] Start training for phase %s, with start epoch %d start iter %d : " % (train_phase, start_epoch, iter_num)) start_time = time.time() image_id = 0 for epoch in range(start_epoch, epoch): for batch_id in range(start_step, numBatch): batch_input_low = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32") batch_input_high = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32") for patch_id in range(batch_size): h, w, _ = train_low_data[image_id].shape x = random.randint(0, h - patch_size) y = random.randint(0, w - patch_size) rand_mode = random.randint(0, 7) batch_input_low[patch_id, :, :, :] = data_augmentation(train_low_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode) batch_input_high[patch_id, :, :, :] = data_augmentation(train_high_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode) image_id = (image_id + 1) % len(train_low_data) if image_id == 0: tmp = list(zip(train_low_data, train_high_data)) random.shuffle(tmp) train_low_data, train_high_data = zip(*tmp) _, loss = sess.run([train_op, train_loss], feed_dict={input_low: batch_input_low, \ input_high: batch_input_high, \ lr: learning_rate}) print("%s Epoch: [%2d] [%4d/%4d] time: %4.4f, loss: %.6f" \ % (train_phase, epoch + 1, batch_id + 1, numBatch, time.time() - start_time, loss)) iter_num += 1 if (epoch + 1) % eval_every_epoch == 0: print("[*] Evaluating for phase %s / epoch %d..." % (train_phase, epoch + 1)) for idx in range(len(eval_low_data)): input_low_eval = np.expand_dims(eval_low_data[idx], axis=0) result_1, result_2 = sess.run([output_R_low, output_I_low], feed_dict={input_low: input_low_eval}) save_images(os.path.join(sample_dir, 'low_%d_%d.png' % ( idx + 1, epoch + 1)), result_1, result_2) for idx in range(len(eval_high_data)): input_high_eval = np.expand_dims(eval_high_data[idx], axis=0) result_11, result_22 = sess.run([output_R_high, output_I_high], feed_dict={input_high: input_high_eval}) save_images(os.path.join(sample_dir, 'high_%d_%d.png' % ( idx + 1, epoch + 1)), result_11, result_22) saver.save(sess, checkpoint_dir + 'model.ckpt') print("[*] Finish training for phase %s." % train_phase)