You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

141 lines
4.9 KiB

import numpy as np
from PIL import Image
import tensorflow as tf
import scipy.stats as st
from skimage import io,data,color
from functools import reduce
def gauss_kernel(kernlen=21, nsig=3, channels=1):
interval = (2*nsig+1.)/(kernlen)
x = np.linspace(-nsig-interval/2., nsig+interval/2., kernlen+1)
kern1d = np.diff(st.norm.cdf(x))
kernel_raw = np.sqrt(np.outer(kern1d, kern1d))
kernel = kernel_raw/kernel_raw.sum()
out_filter = np.array(kernel, dtype = np.float32)
out_filter = out_filter.reshape((kernlen, kernlen, 1, 1))
out_filter = np.repeat(out_filter, channels, axis = 2)
return out_filter
def tensor_size(tensor):
from operator import mul
return reduce(mul, (d.value for d in tensor.get_shape()[1:]), 1)
def blur(x):
kernel_var = gauss_kernel(21, 3, 3)
return tf.nn.depthwise_conv2d(x, kernel_var, [1, 1, 1, 1], padding='SAME')
def tensor_size(tensor):
from operator import mul
return reduce(mul, (d.value for d in tensor.get_shape()[1:]), 1)
def data_augmentation(image, mode):
if mode == 0:
# original
return image
elif mode == 1:
# flip up and down
return np.flipud(image)
elif mode == 2:
# rotate counterwise 90 degree
return np.rot90(image)
elif mode == 3:
# rotate 90 degree and flip up and down
image = np.rot90(image)
return np.flipud(image)
elif mode == 4:
# rotate 180 degree
return np.rot90(image, k=2)
elif mode == 5:
# rotate 180 degree and flip
image = np.rot90(image, k=2)
return np.flipud(image)
elif mode == 6:
# rotate 270 degree
return np.rot90(image, k=3)
elif mode == 7:
# rotate 270 degree and flip
image = np.rot90(image, k=3)
return np.flipud(image)
def load_images(file):
im = Image.open(file)
img = np.array(im, dtype="float32") / 255.0
img_max = np.max(img)
img_min = np.min(img)
img_norm = np.float32((img - img_min) / np.maximum((img_max - img_min), 0.001))
return img_norm
def gradient(input_tensor, direction):
smooth_kernel_x = tf.reshape(tf.constant([[0, 0], [-1, 1]], tf.float32), [2, 2, 1, 1])
smooth_kernel_y = tf.transpose(smooth_kernel_x, [1, 0, 2, 3])
if direction == "x":
kernel = smooth_kernel_x
elif direction == "y":
kernel = smooth_kernel_y
gradient_orig = tf.abs(tf.nn.conv2d(input_tensor, kernel, strides=[1, 1, 1, 1], padding='SAME'))
grad_min = tf.reduce_min(gradient_orig)
grad_max = tf.reduce_max(gradient_orig)
grad_norm = tf.div((gradient_orig - grad_min), (grad_max - grad_min + 0.0001))
return grad_norm
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
x_data = np.expand_dims(x_data, axis=-1)
x_data = np.expand_dims(x_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
x = tf.constant(x_data, dtype=tf.float32)
y = tf.constant(y_data, dtype=tf.float32)
g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2)))
return g / tf.reduce_sum(g)
def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5):
window = _tf_fspecial_gauss(size, sigma) # window shape [size, size]
K1 = 0.01
K2 = 0.03
L = 1 # depth of image (255 in case the image has a differnt scale)
C1 = (K1*L)**2
C2 = (K2*L)**2
mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID')
mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1],padding='VALID')
mu1_sq = mu1*mu1
mu2_sq = mu2*mu2
mu1_mu2 = mu1*mu2
sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1],padding='VALID') - mu1_sq
sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1],padding='VALID') - mu2_sq
sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1],padding='VALID') - mu1_mu2
if cs_map:
value = (((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
(sigma1_sq + sigma2_sq + C2)),
(2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2))
else:
value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
(sigma1_sq + sigma2_sq + C2))
if mean_metric:
value = tf.reduce_mean(value)
return value
def save_images(filepath, result_1, result_2 = None, result_3 = None):
result_1 = np.squeeze(result_1)
result_2 = np.squeeze(result_2)
result_3 = np.squeeze(result_3)
if not result_2.any():
cat_image = result_1
else:
cat_image = np.concatenate([result_1, result_2], axis = 1)
if not result_3.any():
cat_image = cat_image
else:
cat_image = np.concatenate([cat_image, result_3], axis = 1)
im = Image.fromarray(np.clip(cat_image * 255.0, 0, 255.0).astype('uint8'))
im.save(filepath, 'png')