# kernelNet MovieLens-1M State of the art model for MovieLens-1M. This is a minimal implementation of a kernelNet sparsified autoencoder for MovieLens-1M. See http://proceedings.mlr.press/v80/muller18a.html ## Setup Download this repository ### Requirements * numpy * scipy * tensorflow (tested with version 1.4.1) ### Dataset Expects MovieLens-1M dataset in a subdirectory named ml-1m. Get it here https://grouplens.org/datasets/movielens/1m/ or on linux run in the project directory ```wget --output-document=ml-1m.zip http://www.grouplens.org/system/files/ml-1m.zip; unzip ml-1m.zip``` ## Run ```python kernelNet_ml1m.py``` optional arguments are the L2 and sparsity regularization strength. Default is 60. and 0.013 ### Results with the default parameters this slightly outperforms the paper model at 0.823 validation RMSE (10-times repeated random sub-sampling validation)