from __future__ import division import time import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import cv2 from util import * import argparse import os import os.path as osp from darknet import Darknet import pickle as pkl import pandas as pd import random # 命令行参数 def arg_parse(): parser = argparse.ArgumentParser(description='YOLO v3 Detection Module') # images(用于指定输入图像或图像目录) parser.add_argument("--images", dest = 'images', help = "Image / Directory containing images to perform detection upon", default = "imgs", type = str) # det(保存检测结果的目录) parser.add_argument("--det", dest = 'det', help = "Image / Directory to store detections to", default = "det", type = str) # batch大小 parser.add_argument("--bs", dest = "bs", help = "Batch size", default = 1) # objectness置信度 parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.5) # NMS阈值 parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4) # cfg(替代配置文件) parser.add_argument("--cfg", dest = 'cfgfile', help = "Config file", default = "cfg/yolov3.cfg", type = str) parser.add_argument("--weights", dest = 'weightsfile', help = "weightsfile", default = "yolov3.weights", type = str) # reso(输入图像的分辨率,可用于在速度与准确度之间的权衡) parser.add_argument("--reso", dest = 'reso', help = "Input resolution of the network. Increase to increase accuracy. Decrease to increase speed", default = "416", type = str) return parser.parse_args() if __name__ == '__main__': args = arg_parse() images = args.images batch_size = int(args.bs) confidence = float(args.confidence) nms_thesh = float(args.nms_thresh) start = 0 CUDA = torch.cuda.is_available() num_classes = 80 # COCO数据集中目标的名称 classes = load_classes("data/coco.names") # 初始化网络,加载权重 print("正在加载网络QAQ") model = Darknet(args.cfgfile) model.load_weights(args.weightsfile) print("网络加载成功QvQ") model.net_info["height"] = args.reso inp_dim = int(model.net_info["height"]) assert inp_dim % 32 == 0 assert inp_dim > 32 # GPU加速 if CUDA: model.cuda() # 模型评估 model.eval() # 从磁盘读取图像或从目录读取多张图像,图像路径imlist read_dir = time.time() # 测量时间的检查点 # 检测阶段 try: imlist = [osp.join(osp.realpath('.'), images, img) for img in os.listdir(images)] except NotADirectoryError: imlist = [] imlist.append(osp.join(osp.realpath('.'), images)) except FileNotFoundError: print("没有找到{}文件或目录QwQ".format(images)) exit() # 如果没有保存检测结果的目录,就创建一个 if not os.path.exists(args.det): os.makedirs(args.det) # 用OpenCV加载多张图片图像 load_batch = time.time() loaded_ims = [cv2.imread(x) for x in imlist] # 转成PyTorch图像格式 im_batches = list(map(prep_image, loaded_ims, [inp_dim for x in range(len(imlist))])) # 包含原始图像的维度的列表 im_dim_list = [(x.shape[1], x.shape[0]) for x in loaded_ims] im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2) # 创建batch leftover = 0 if (len(im_dim_list) % batch_size): leftover = 1 if batch_size != 1: num_batches = len(imlist) // batch_size + leftover im_batches = [torch.cat((im_batches[i*batch_size : min((i+1)*batch_size, len(im_batches))])) for i in range(num_batches)] write = 0 if CUDA: im_dim_list = im_dim_list.cuda() start_det_loop = time.time() for i, batch in enumerate(im_batches): # 载入图片 start = time.time() if CUDA: batch = batch.cuda() with torch.no_grad(): prediction = model(Variable(batch), CUDA) prediction = write_results(prediction, confidence, num_classes, nms_conf=nms_thesh) end = time.time() if type(prediction) == int: for im_num, image in enumerate(imlist[i*batch_size: min((i + 1)*batch_size, len(imlist))]): im_id = i*batch_size + im_num print("{0:20s} 预测用时{1:6.3f} 秒".format(image.split("/")[-1], (end - start)/batch_size)) print("{0:20s} {1:s}".format("检测到的对象:", " ")) print("----------------------------------------------------------") continue prediction[:,0] += i*batch_size # 将batch索引转换成imlist索引 if not write: # 初始化output output = prediction write = 1 else: output = torch.cat((output, prediction)) for im_num, image in enumerate(imlist[i*batch_size:min((i+1)*batch_size, len(imlist))]): im_id = i*batch_size + im_num objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id] print("{0:20s} 预测用时{1:6.3f} 秒".format(image.split("/")[-1], (end - start)/batch_size)) print("{0:20s} {1:s}".format("检测到的对象:", " ".join(objs))) print("----------------------------------------------------------------") if CUDA: torch.cuda.synchronize() # 保证CUDA核与CPU同步 # 在图像上绘制边界框 try: output except NameError: print("不存在检测结果TAT") exit() # 输出边界框对应网络输入大小,需要将边界框属性转换到图像的原始尺寸 im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long()) scaling_factor = torch.min(inp_dim/im_dim_list,1)[0].view(-1,1) output[:,[1,3]] -= (inp_dim - scaling_factor*im_dim_list[:,0].view(-1,1))/2 output[:,[2,4]] -= (inp_dim - scaling_factor*im_dim_list[:,1].view(-1,1))/2 output[:,1:5] /= scaling_factor for i in range(output.shape[0]): output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0]) output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1]) output_recast = time.time() # 随机选择的颜色用于绘制边界框 class_load = time.time() colors = pkl.load(open("pallete", "rb")) # 开始绘制边界框 draw = time.time() # 绘制边界框:从colors中随机选颜色绘制矩形框 # 边界框左上角创建一个填充后的矩形,写入该框位置检测到的目标的类别 def write(x, results): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) img = results[int(x[0])] cls = int(x[-1]) color = random.choice(colors) label = "{0}".format(classes[cls]) cv2.rectangle(img, c1, c2, color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2, color, -1) # -1表示填充的矩形 cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,225,225], 1) return img list(map(lambda x:write(x, loaded_ims), output)) # 保存检测结果图像,det_图像名 det_names = pd.Series(imlist).apply(lambda x: "{}/det_{}".format(args.det, x.split("/")[-1])) # 将带有检测结果的图像写入det_names中的地址 list(map(cv2.imwrite, det_names, loaded_ims)) end = time.time() # 显示输出时间的总结 print("总结") print("----------------------------------------------------------------") print("{:25s} {}".format("任务", "所用时间(s)")) print() print("{:25s} {:2.3f}".format("读入目录", load_batch - read_dir)) print("{:25s} {:2.3f}".format("加载batch", start_det_loop - load_batch)) print("{:25s} {:2.3f}".format("检测(" + str(len(imlist)) + "张图)", output_recast - start_det_loop)) print("{:25s} {:2.3f}".format("输出处理", class_load - output_recast)) print("{:25s} {:2.3f}".format("绘制边界框", end - draw)) print("{:25s} {:2.3f}".format("平均检测时间", (end - load_batch)/len(imlist))) print("----------------------------------------------------------------") torch.cuda.empty_cache()