You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

510 lines
15 KiB

// Copyright 2021-2024 Buf Technologies, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { varint32read, varint32write, varint64read, varint64write, } from "./varint.js";
import { protoInt64 } from "../proto-int64.js";
import { getTextEncoding } from "./text-encoding.js";
/* eslint-disable prefer-const,no-case-declarations,@typescript-eslint/restrict-plus-operands */
/**
* Protobuf binary format wire types.
*
* A wire type provides just enough information to find the length of the
* following value.
*
* See https://developers.google.com/protocol-buffers/docs/encoding#structure
*/
export var WireType;
(function (WireType) {
/**
* Used for int32, int64, uint32, uint64, sint32, sint64, bool, enum
*/
WireType[WireType["Varint"] = 0] = "Varint";
/**
* Used for fixed64, sfixed64, double.
* Always 8 bytes with little-endian byte order.
*/
WireType[WireType["Bit64"] = 1] = "Bit64";
/**
* Used for string, bytes, embedded messages, packed repeated fields
*
* Only repeated numeric types (types which use the varint, 32-bit,
* or 64-bit wire types) can be packed. In proto3, such fields are
* packed by default.
*/
WireType[WireType["LengthDelimited"] = 2] = "LengthDelimited";
/**
* Start of a tag-delimited aggregate, such as a proto2 group, or a message
* in editions with message_encoding = DELIMITED.
*/
WireType[WireType["StartGroup"] = 3] = "StartGroup";
/**
* End of a tag-delimited aggregate.
*/
WireType[WireType["EndGroup"] = 4] = "EndGroup";
/**
* Used for fixed32, sfixed32, float.
* Always 4 bytes with little-endian byte order.
*/
WireType[WireType["Bit32"] = 5] = "Bit32";
})(WireType || (WireType = {}));
/**
* Maximum value for a 32-bit floating point value (Protobuf FLOAT).
*/
export const FLOAT32_MAX = 3.4028234663852886e38;
/**
* Minimum value for a 32-bit floating point value (Protobuf FLOAT).
*/
export const FLOAT32_MIN = -3.4028234663852886e38;
/**
* Maximum value for an unsigned 32-bit integer (Protobuf UINT32, FIXED32).
*/
export const UINT32_MAX = 0xffffffff;
/**
* Maximum value for a signed 32-bit integer (Protobuf INT32, SFIXED32, SINT32).
*/
export const INT32_MAX = 0x7fffffff;
/**
* Minimum value for a signed 32-bit integer (Protobuf INT32, SFIXED32, SINT32).
*/
export const INT32_MIN = -0x80000000;
export class BinaryWriter {
constructor(encodeUtf8 = getTextEncoding().encodeUtf8) {
this.encodeUtf8 = encodeUtf8;
/**
* Previous fork states.
*/
this.stack = [];
this.chunks = [];
this.buf = [];
}
/**
* Return all bytes written and reset this writer.
*/
finish() {
if (this.buf.length) {
this.chunks.push(new Uint8Array(this.buf)); // flush the buffer
this.buf = [];
}
let len = 0;
for (let i = 0; i < this.chunks.length; i++)
len += this.chunks[i].length;
let bytes = new Uint8Array(len);
let offset = 0;
for (let i = 0; i < this.chunks.length; i++) {
bytes.set(this.chunks[i], offset);
offset += this.chunks[i].length;
}
this.chunks = [];
return bytes;
}
/**
* Start a new fork for length-delimited data like a message
* or a packed repeated field.
*
* Must be joined later with `join()`.
*/
fork() {
this.stack.push({ chunks: this.chunks, buf: this.buf });
this.chunks = [];
this.buf = [];
return this;
}
/**
* Join the last fork. Write its length and bytes, then
* return to the previous state.
*/
join() {
// get chunk of fork
let chunk = this.finish();
// restore previous state
let prev = this.stack.pop();
if (!prev)
throw new Error("invalid state, fork stack empty");
this.chunks = prev.chunks;
this.buf = prev.buf;
// write length of chunk as varint
this.uint32(chunk.byteLength);
return this.raw(chunk);
}
/**
* Writes a tag (field number and wire type).
*
* Equivalent to `uint32( (fieldNo << 3 | type) >>> 0 )`.
*
* Generated code should compute the tag ahead of time and call `uint32()`.
*/
tag(fieldNo, type) {
return this.uint32(((fieldNo << 3) | type) >>> 0);
}
/**
* Write a chunk of raw bytes.
*/
raw(chunk) {
if (this.buf.length) {
this.chunks.push(new Uint8Array(this.buf));
this.buf = [];
}
this.chunks.push(chunk);
return this;
}
/**
* Write a `uint32` value, an unsigned 32 bit varint.
*/
uint32(value) {
assertUInt32(value);
// write value as varint 32, inlined for speed
while (value > 0x7f) {
this.buf.push((value & 0x7f) | 0x80);
value = value >>> 7;
}
this.buf.push(value);
return this;
}
/**
* Write a `int32` value, a signed 32 bit varint.
*/
int32(value) {
assertInt32(value);
varint32write(value, this.buf);
return this;
}
/**
* Write a `bool` value, a variant.
*/
bool(value) {
this.buf.push(value ? 1 : 0);
return this;
}
/**
* Write a `bytes` value, length-delimited arbitrary data.
*/
bytes(value) {
this.uint32(value.byteLength); // write length of chunk as varint
return this.raw(value);
}
/**
* Write a `string` value, length-delimited data converted to UTF-8 text.
*/
string(value) {
let chunk = this.encodeUtf8(value);
this.uint32(chunk.byteLength); // write length of chunk as varint
return this.raw(chunk);
}
/**
* Write a `float` value, 32-bit floating point number.
*/
float(value) {
assertFloat32(value);
let chunk = new Uint8Array(4);
new DataView(chunk.buffer).setFloat32(0, value, true);
return this.raw(chunk);
}
/**
* Write a `double` value, a 64-bit floating point number.
*/
double(value) {
let chunk = new Uint8Array(8);
new DataView(chunk.buffer).setFloat64(0, value, true);
return this.raw(chunk);
}
/**
* Write a `fixed32` value, an unsigned, fixed-length 32-bit integer.
*/
fixed32(value) {
assertUInt32(value);
let chunk = new Uint8Array(4);
new DataView(chunk.buffer).setUint32(0, value, true);
return this.raw(chunk);
}
/**
* Write a `sfixed32` value, a signed, fixed-length 32-bit integer.
*/
sfixed32(value) {
assertInt32(value);
let chunk = new Uint8Array(4);
new DataView(chunk.buffer).setInt32(0, value, true);
return this.raw(chunk);
}
/**
* Write a `sint32` value, a signed, zigzag-encoded 32-bit varint.
*/
sint32(value) {
assertInt32(value);
// zigzag encode
value = ((value << 1) ^ (value >> 31)) >>> 0;
varint32write(value, this.buf);
return this;
}
/**
* Write a `fixed64` value, a signed, fixed-length 64-bit integer.
*/
sfixed64(value) {
let chunk = new Uint8Array(8), view = new DataView(chunk.buffer), tc = protoInt64.enc(value);
view.setInt32(0, tc.lo, true);
view.setInt32(4, tc.hi, true);
return this.raw(chunk);
}
/**
* Write a `fixed64` value, an unsigned, fixed-length 64 bit integer.
*/
fixed64(value) {
let chunk = new Uint8Array(8), view = new DataView(chunk.buffer), tc = protoInt64.uEnc(value);
view.setInt32(0, tc.lo, true);
view.setInt32(4, tc.hi, true);
return this.raw(chunk);
}
/**
* Write a `int64` value, a signed 64-bit varint.
*/
int64(value) {
let tc = protoInt64.enc(value);
varint64write(tc.lo, tc.hi, this.buf);
return this;
}
/**
* Write a `sint64` value, a signed, zig-zag-encoded 64-bit varint.
*/
sint64(value) {
let tc = protoInt64.enc(value),
// zigzag encode
sign = tc.hi >> 31, lo = (tc.lo << 1) ^ sign, hi = ((tc.hi << 1) | (tc.lo >>> 31)) ^ sign;
varint64write(lo, hi, this.buf);
return this;
}
/**
* Write a `uint64` value, an unsigned 64-bit varint.
*/
uint64(value) {
let tc = protoInt64.uEnc(value);
varint64write(tc.lo, tc.hi, this.buf);
return this;
}
}
export class BinaryReader {
constructor(buf, decodeUtf8 = getTextEncoding().decodeUtf8) {
this.decodeUtf8 = decodeUtf8;
this.varint64 = varint64read; // dirty cast for `this`
/**
* Read a `uint32` field, an unsigned 32 bit varint.
*/
this.uint32 = varint32read;
this.buf = buf;
this.len = buf.length;
this.pos = 0;
this.view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
}
/**
* Reads a tag - field number and wire type.
*/
tag() {
let tag = this.uint32(), fieldNo = tag >>> 3, wireType = tag & 7;
if (fieldNo <= 0 || wireType < 0 || wireType > 5)
throw new Error("illegal tag: field no " + fieldNo + " wire type " + wireType);
return [fieldNo, wireType];
}
/**
* Skip one element and return the skipped data.
*
* When skipping StartGroup, provide the tags field number to check for
* matching field number in the EndGroup tag.
*/
skip(wireType, fieldNo) {
let start = this.pos;
switch (wireType) {
case WireType.Varint:
while (this.buf[this.pos++] & 0x80) {
// ignore
}
break;
// eslint-disable-next-line
// @ts-expect-error TS7029: Fallthrough case in switch
case WireType.Bit64:
this.pos += 4;
// eslint-disable-next-line no-fallthrough
case WireType.Bit32:
this.pos += 4;
break;
case WireType.LengthDelimited:
let len = this.uint32();
this.pos += len;
break;
case WireType.StartGroup:
for (;;) {
const [fn, wt] = this.tag();
if (wt === WireType.EndGroup) {
if (fieldNo !== undefined && fn !== fieldNo) {
throw new Error("invalid end group tag");
}
break;
}
this.skip(wt, fn);
}
break;
default:
throw new Error("cant skip wire type " + wireType);
}
this.assertBounds();
return this.buf.subarray(start, this.pos);
}
/**
* Throws error if position in byte array is out of range.
*/
assertBounds() {
if (this.pos > this.len)
throw new RangeError("premature EOF");
}
/**
* Read a `int32` field, a signed 32 bit varint.
*/
int32() {
return this.uint32() | 0;
}
/**
* Read a `sint32` field, a signed, zigzag-encoded 32-bit varint.
*/
sint32() {
let zze = this.uint32();
// decode zigzag
return (zze >>> 1) ^ -(zze & 1);
}
/**
* Read a `int64` field, a signed 64-bit varint.
*/
int64() {
return protoInt64.dec(...this.varint64());
}
/**
* Read a `uint64` field, an unsigned 64-bit varint.
*/
uint64() {
return protoInt64.uDec(...this.varint64());
}
/**
* Read a `sint64` field, a signed, zig-zag-encoded 64-bit varint.
*/
sint64() {
let [lo, hi] = this.varint64();
// decode zig zag
let s = -(lo & 1);
lo = ((lo >>> 1) | ((hi & 1) << 31)) ^ s;
hi = (hi >>> 1) ^ s;
return protoInt64.dec(lo, hi);
}
/**
* Read a `bool` field, a variant.
*/
bool() {
let [lo, hi] = this.varint64();
return lo !== 0 || hi !== 0;
}
/**
* Read a `fixed32` field, an unsigned, fixed-length 32-bit integer.
*/
fixed32() {
return this.view.getUint32((this.pos += 4) - 4, true);
}
/**
* Read a `sfixed32` field, a signed, fixed-length 32-bit integer.
*/
sfixed32() {
return this.view.getInt32((this.pos += 4) - 4, true);
}
/**
* Read a `fixed64` field, an unsigned, fixed-length 64 bit integer.
*/
fixed64() {
return protoInt64.uDec(this.sfixed32(), this.sfixed32());
}
/**
* Read a `fixed64` field, a signed, fixed-length 64-bit integer.
*/
sfixed64() {
return protoInt64.dec(this.sfixed32(), this.sfixed32());
}
/**
* Read a `float` field, 32-bit floating point number.
*/
float() {
return this.view.getFloat32((this.pos += 4) - 4, true);
}
/**
* Read a `double` field, a 64-bit floating point number.
*/
double() {
return this.view.getFloat64((this.pos += 8) - 8, true);
}
/**
* Read a `bytes` field, length-delimited arbitrary data.
*/
bytes() {
let len = this.uint32(), start = this.pos;
this.pos += len;
this.assertBounds();
return this.buf.subarray(start, start + len);
}
/**
* Read a `string` field, length-delimited data converted to UTF-8 text.
*/
string() {
return this.decodeUtf8(this.bytes());
}
}
/**
* Assert a valid signed protobuf 32-bit integer as a number or string.
*/
function assertInt32(arg) {
if (typeof arg == "string") {
arg = Number(arg);
}
else if (typeof arg != "number") {
throw new Error("invalid int32: " + typeof arg);
}
if (!Number.isInteger(arg) ||
arg > INT32_MAX ||
arg < INT32_MIN)
throw new Error("invalid int32: " + arg);
}
/**
* Assert a valid unsigned protobuf 32-bit integer as a number or string.
*/
function assertUInt32(arg) {
if (typeof arg == "string") {
arg = Number(arg);
}
else if (typeof arg != "number") {
throw new Error("invalid uint32: " + typeof arg);
}
if (!Number.isInteger(arg) ||
arg > UINT32_MAX ||
arg < 0)
throw new Error("invalid uint32: " + arg);
}
/**
* Assert a valid protobuf float value as a number or string.
*/
function assertFloat32(arg) {
if (typeof arg == "string") {
const o = arg;
arg = Number(arg);
if (isNaN(arg) && o !== "NaN") {
throw new Error("invalid float32: " + o);
}
}
else if (typeof arg != "number") {
throw new Error("invalid float32: " + typeof arg);
}
if (Number.isFinite(arg) &&
(arg > FLOAT32_MAX || arg < FLOAT32_MIN))
throw new Error("invalid float32: " + arg);
}