import csv import requests import re import pandas as pd from matplotlib import pyplot as plt # 用黑体显示中文 plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置请求头信息 headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36" } # 存储内容 message = [] # 总共16个页面的数据 for page in range(16): # 组装url if page == 0: url = "https://top.chinaz.com/gongsitop/index_500top.html" else: url = "https://top.chinaz.com/gongsitop/index_500top_{}.html".format(page + 1) # 使用reqeusts模快发起 GET 请求 response = requests.get(url, headers=headers) html = response.text # 使用 findall 函数来获取数据 # 公司名 company = re.findall('(.+?)', html) # 法定代表人 person = re.findall('法定代表人:(.*?)

', html) # 注册时间 signDate = re.findall('注册时间:(.*?)

', html) # 证券类别 category = re.findall('证券类别:(.*?)

', html) pageOne = list(zip(company, person, signDate, category)) # 合并列表 message.extend(pageOne) with open("content.csv", "w") as f: w = csv.writer(f) w.writerows(message) # 读取数据 df = pd.read_csv("content.csv", names=["company", "person", "signDate", "category"],encoding='gbk') # 根据证券类型进行分组 df1 = df.groupby("category").count()["company"] print(df1) # 每个扇形的标签 labels = df1.index # 每个扇形的占比 sizes = df1.values plt.figure(figsize=(80,40),dpi=80) fig1, ax1 = plt.subplots() # 绘制饼图 ax1.pie(sizes, labels=labels, autopct='%d%%',radius=1.3,textprops={'fontsize': 20}, shadow=False, startangle=90) ax1.axis() plt.show()