From 74458dfe627ff0283103ccdf46dca73c4a5eb12f Mon Sep 17 00:00:00 2001 From: hnu202109060208 Date: Sun, 4 Dec 2022 18:08:34 +0800 Subject: [PATCH] ADD file via upload --- 最高最低价格复合对比图.py | 52 ++++++++++++++++++++++++++++ 1 file changed, 52 insertions(+) create mode 100644 最高最低价格复合对比图.py diff --git a/最高最低价格复合对比图.py b/最高最低价格复合对比图.py new file mode 100644 index 0000000..481a887 --- /dev/null +++ b/最高最低价格复合对比图.py @@ -0,0 +1,52 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Dec 2 22:10:31 2022 + +@author: DELL +""" + +import datetime +import pandas as pd +import matplotlib.pyplot as plt +import numpy as np +with open('information.txt','r',encoding='utf-8') as fe: + info=fe.read() + lst=info.split(' ') + date1 = datetime.datetime.strptime(lst[2],"%Y-%m-%d") + date2 = date1 + datetime.timedelta(days=int(lst[3])) +df = pd.read_csv("contentt.csv", encoding=('gb2312'),names=["date","flightNum", "depTime", "arrTime", "price"]) +df.head() +df1 = df.groupby("date").count()["flightNum"] +plt.rcParams['font.sans-serif'] = ['SimHei'] +plt.rcParams['figure.figsize'] = (13, 8) + +x = np.arange(int(lst[3])) + +#x=df1.index +pricmax=[] +pricmin=[] +for i in range(int(lst[3])): + date1 = date1 + datetime.timedelta(days=1) + df2=df[df.date==str(date1)[0:10]] + pric=df2['price'].max() + pricm=df2['price'].min() + pricmax.append(pric) + pricmin.append(pricm) + +bar_width = 0.35 +plt.bar(x,pricmin,bar_width,align="center",label="min",alpha=0.5) +plt.bar(x+bar_width,pricmax,bar_width,align="center",label="max",alpha=0.5) +plt.xticks(x+bar_width/2,df1.index.tolist()) + +x=df1.index +for a, b in zip(df1.index.tolist(), pricmax): + plt.text(a, b, b, ha='left', va='bottom', fontsize=20,color='firebrick') +for a, b in zip(df1.index.tolist(), pricmin): + plt.text(a, b, b, ha='center', va='top', fontsize=20,color='teal') +plt.xlabel("日期",fontsize=14) +plt.ylabel("机票价格",fontsize=14) +plt.plot(x, pricmin, marker="v",color='steelblue') + +x = np.arange(int(lst[3])) +plt.plot(x+bar_width, pricmax, marker="^",color='indianred') +plt.xticks(x+bar_width/2,df1.index.tolist())