parent
e0b9e1a1da
commit
fb254c4144
@ -1,60 +1,58 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Dec 12 15:24:14 2023
|
||||
|
||||
@author: Toon
|
||||
"""
|
||||
|
||||
import requests
|
||||
from lxml import etree
|
||||
import csv
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# 请求的url
|
||||
url = "https://www.bitpush.news/covid19/"
|
||||
# 设置请求头信息
|
||||
headers = {
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36"
|
||||
}
|
||||
# 使用reqeusts模快发起 GET 请求
|
||||
response = requests.get(url, headers=headers)
|
||||
# 获取请求的返回结果
|
||||
html = response.text
|
||||
parse = etree.HTMLParser(encoding='utf-8') # 添加编码
|
||||
# 解析 requests 返回的响应结果
|
||||
doc = etree.HTML(html)
|
||||
state = doc.xpath('//html/body/div/div/div[2]/div[2]/div/div/div/div//tbody/tr/td/span/text()')
|
||||
# 确诊人数
|
||||
person = doc.xpath('//html/body/div/div/div[2]/div[2]/div/div/div/div//tbody/tr/td[2]/text()')
|
||||
# 由于确诊人数中有逗号,我们使用列表推导式删除
|
||||
person = [x.replace(",", "") for x in person]
|
||||
# 死亡人数
|
||||
death = doc.xpath('//html/body/div/div/div[2]/div[2]/div/div/div/div//tbody/tr/td[3]/text()')
|
||||
# 同样使用列表推导式删除逗号
|
||||
death = [x.replace(",", "") for x in death]
|
||||
message = list(zip(state, person, death))
|
||||
with open("content.csv", "w") as f:
|
||||
w = csv.writer(f)
|
||||
w.writerows(message)
|
||||
df = pd.read_csv("content.csv", names=["country", "person", "death"],encoding='gbk')
|
||||
df.head()
|
||||
df.info()
|
||||
df1 = df.head(15)
|
||||
df1 = df1[::-1]
|
||||
# 在jupyter中直接展示图像
|
||||
#%matplotlib inline
|
||||
# 设置中文显示
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
plt.rcParams['figure.figsize'] = (5,5) # 设置figure_size尺寸
|
||||
|
||||
#制作柱形图
|
||||
x = df1["country"].values
|
||||
y = df1["person"].values
|
||||
plt.barh(x, y)
|
||||
plt.ylabel("国家",fontsize=14)
|
||||
plt.xlabel("确诊人数",fontsize=14)
|
||||
for x,y in zip(y,x):
|
||||
plt.text(x, y,x, ha='left', va='center',color='r')
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Dec 12 15:24:14 2023
|
||||
@author: Toon
|
||||
"""
|
||||
|
||||
import requests
|
||||
from lxml import etree
|
||||
import csv
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# 请求的url
|
||||
url = "https://www.bitpush.news/covid19/"
|
||||
# 设置请求头信息
|
||||
headers = {
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36"
|
||||
}
|
||||
# 使用reqeusts模快发起 GET 请求
|
||||
response = requests.get(url, headers=headers)
|
||||
# 获取请求的返回结果
|
||||
html = response.text
|
||||
parse = etree.HTMLParser(encoding='utf-8') # 添加编码
|
||||
# 解析 requests 返回的响应结果
|
||||
doc = etree.HTML(html)
|
||||
# 地区名称
|
||||
state = doc.xpath('//html/body/div/div/div[2]/div[2]/div/div/div/div//tbody/tr/td/span/text()')
|
||||
# 确诊人数
|
||||
person = doc.xpath('//html/body/div/div/div[2]/div[2]/div/div/div/div//tbody/tr/td[2]/text()')
|
||||
# 由于确诊人数中有逗号,我们使用列表推导式删除
|
||||
person = [x.replace(",", "") for x in person]
|
||||
# 死亡人数
|
||||
death = doc.xpath('//html/body/div/div/div[2]/div[2]/div/div/div/div//tbody/tr/td[3]/text()')
|
||||
# 同样使用列表推导式删除逗号
|
||||
death = [x.replace(",", "") for x in death]
|
||||
message = list(zip(state, person, death))
|
||||
with open("content.csv", "w") as f:
|
||||
w = csv.writer(f)
|
||||
w.writerows(message)
|
||||
df = pd.read_csv("content.csv", names=["country", "person", "death"],encoding='gbk')
|
||||
df.head()
|
||||
df.info()
|
||||
df1 = df.head(15)
|
||||
df1 = df1[::-1]
|
||||
# 设置中文显示
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
plt.rcParams['figure.figsize'] = (5,5) # 设置figure_size尺寸
|
||||
|
||||
#制作柱形图
|
||||
x = df1["country"].values
|
||||
y = df1["person"].values
|
||||
plt.barh(x, y)
|
||||
plt.ylabel("国家",fontsize=14)
|
||||
plt.xlabel("确诊人数",fontsize=14)
|
||||
for x,y in zip(y,x):
|
||||
plt.text(x, y,x, ha='left', va='center',color='r')
|
||||
plt.show()
|
Loading…
Reference in new issue