|
|
|
import argparse
|
|
|
|
import json
|
|
|
|
|
|
|
|
import yaml
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
|
|
|
from utils.datasets import *
|
|
|
|
from utils.utils import *
|
|
|
|
|
|
|
|
|
|
|
|
def test(data,
|
|
|
|
weights=None,
|
|
|
|
batch_size=16,
|
|
|
|
imgsz=640,
|
|
|
|
conf_thres=0.001,
|
|
|
|
iou_thres=0.6, # for nms
|
|
|
|
save_json=False,
|
|
|
|
single_cls=False,
|
|
|
|
augment=False,
|
|
|
|
model=None,
|
|
|
|
dataloader=None,
|
|
|
|
fast=False,
|
|
|
|
verbose=False): # 0 fast, 1 accurate
|
|
|
|
# Initialize/load model and set device
|
|
|
|
if model is None:
|
|
|
|
device = torch_utils.select_device(opt.device, batch_size=batch_size)
|
|
|
|
|
|
|
|
# Remove previous
|
|
|
|
for f in glob.glob('test_batch*.jpg'):
|
|
|
|
os.remove(f)
|
|
|
|
|
|
|
|
# Load model
|
|
|
|
google_utils.attempt_download(weights)
|
|
|
|
model = torch.load(weights, map_location=device)['model']
|
|
|
|
torch_utils.model_info(model)
|
|
|
|
# model.fuse()
|
|
|
|
model.to(device)
|
|
|
|
|
|
|
|
if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
|
|
|
model = nn.DataParallel(model)
|
|
|
|
|
|
|
|
training = False
|
|
|
|
else: # called by train.py
|
|
|
|
device = next(model.parameters()).device # get model device
|
|
|
|
training = True
|
|
|
|
|
|
|
|
# Configure run
|
|
|
|
with open(data) as f:
|
|
|
|
data = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
|
|
|
nc = 1 if single_cls else int(data['nc']) # number of classes
|
|
|
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
|
|
|
|
# iouv = iouv[0].view(1) # comment for mAP@0.5:0.95
|
|
|
|
niou = iouv.numel()
|
|
|
|
|
|
|
|
# Dataloader
|
|
|
|
if dataloader is None:
|
|
|
|
fast |= conf_thres > 0.001 # enable fast mode
|
|
|
|
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
|
|
|
|
dataset = LoadImagesAndLabels(path,
|
|
|
|
imgsz,
|
|
|
|
batch_size,
|
|
|
|
rect=True, # rectangular inference
|
|
|
|
single_cls=opt.single_cls, # single class mode
|
|
|
|
pad=0.0 if fast else 0.5) # padding
|
|
|
|
batch_size = min(batch_size, len(dataset))
|
|
|
|
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
|
|
|
|
dataloader = DataLoader(dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
num_workers=nw,
|
|
|
|
pin_memory=True,
|
|
|
|
collate_fn=dataset.collate_fn)
|
|
|
|
|
|
|
|
seen = 0
|
|
|
|
model.eval()
|
|
|
|
_ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None # run once
|
|
|
|
names = model.names if hasattr(model, 'names') else model.module.names
|
|
|
|
coco91class = coco80_to_coco91_class()
|
|
|
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
|
|
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
|
|
|
|
loss = torch.zeros(3, device=device)
|
|
|
|
jdict, stats, ap, ap_class = [], [], [], []
|
|
|
|
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
|
|
|
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
|
|
|
targets = targets.to(device)
|
|
|
|
nb, _, height, width = imgs.shape # batch size, channels, height, width
|
|
|
|
whwh = torch.Tensor([width, height, width, height]).to(device)
|
|
|
|
|
|
|
|
# Disable gradients
|
|
|
|
with torch.no_grad():
|
|
|
|
# Run model
|
|
|
|
t = torch_utils.time_synchronized()
|
|
|
|
inf_out, train_out = model(imgs, augment=augment) # inference and training outputs
|
|
|
|
t0 += torch_utils.time_synchronized() - t
|
|
|
|
|
|
|
|
# Compute loss
|
|
|
|
if training: # if model has loss hyperparameters
|
|
|
|
loss += compute_loss(train_out, targets, model)[1][:3] # GIoU, obj, cls
|
|
|
|
|
|
|
|
# Run NMS
|
|
|
|
t = torch_utils.time_synchronized()
|
|
|
|
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, fast=fast)
|
|
|
|
t1 += torch_utils.time_synchronized() - t
|
|
|
|
|
|
|
|
# Statistics per image
|
|
|
|
for si, pred in enumerate(output):
|
|
|
|
labels = targets[targets[:, 0] == si, 1:]
|
|
|
|
nl = len(labels)
|
|
|
|
tcls = labels[:, 0].tolist() if nl else [] # target class
|
|
|
|
seen += 1
|
|
|
|
|
|
|
|
if pred is None:
|
|
|
|
if nl:
|
|
|
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Append to text file
|
|
|
|
# with open('test.txt', 'a') as file:
|
|
|
|
# [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
|
|
|
|
|
|
|
|
# Clip boxes to image bounds
|
|
|
|
clip_coords(pred, (height, width))
|
|
|
|
|
|
|
|
# Append to pycocotools JSON dictionary
|
|
|
|
if save_json:
|
|
|
|
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
|
|
|
image_id = int(Path(paths[si]).stem.split('_')[-1])
|
|
|
|
box = pred[:, :4].clone() # xyxy
|
|
|
|
scale_coords(imgs[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
|
|
|
box = xyxy2xywh(box) # xywh
|
|
|
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
|
|
|
for p, b in zip(pred.tolist(), box.tolist()):
|
|
|
|
jdict.append({'image_id': image_id,
|
|
|
|
'category_id': coco91class[int(p[5])],
|
|
|
|
'bbox': [round(x, 3) for x in b],
|
|
|
|
'score': round(p[4], 5)})
|
|
|
|
|
|
|
|
# Assign all predictions as incorrect
|
|
|
|
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
|
|
|
|
if nl:
|
|
|
|
detected = [] # target indices
|
|
|
|
tcls_tensor = labels[:, 0]
|
|
|
|
|
|
|
|
# target boxes
|
|
|
|
tbox = xywh2xyxy(labels[:, 1:5]) * whwh
|
|
|
|
|
|
|
|
# Per target class
|
|
|
|
for cls in torch.unique(tcls_tensor):
|
|
|
|
ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices
|
|
|
|
pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices
|
|
|
|
|
|
|
|
# Search for detections
|
|
|
|
if pi.shape[0]:
|
|
|
|
# Prediction to target ious
|
|
|
|
ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
|
|
|
|
|
|
|
|
# Append detections
|
|
|
|
for j in (ious > iouv[0]).nonzero():
|
|
|
|
d = ti[i[j]] # detected target
|
|
|
|
if d not in detected:
|
|
|
|
detected.append(d)
|
|
|
|
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
|
|
|
|
if len(detected) == nl: # all targets already located in image
|
|
|
|
break
|
|
|
|
|
|
|
|
# Append statistics (correct, conf, pcls, tcls)
|
|
|
|
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
|
|
|
|
|
|
|
|
# Plot images
|
|
|
|
if batch_i < 1:
|
|
|
|
f = 'test_batch%g_gt.jpg' % batch_i # filename
|
|
|
|
plot_images(imgs, targets, paths, f, names) # ground truth
|
|
|
|
f = 'test_batch%g_pred.jpg' % batch_i
|
|
|
|
plot_images(imgs, output_to_target(output, width, height), paths, f, names) # predictions
|
|
|
|
|
|
|
|
# Compute statistics
|
|
|
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
|
|
|
if len(stats):
|
|
|
|
p, r, ap, f1, ap_class = ap_per_class(*stats)
|
|
|
|
p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
|
|
|
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
|
|
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
|
|
|
|
else:
|
|
|
|
nt = torch.zeros(1)
|
|
|
|
|
|
|
|
# Print results
|
|
|
|
pf = '%20s' + '%12.3g' * 6 # print format
|
|
|
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
|
|
|
|
|
|
|
# Print results per class
|
|
|
|
if verbose and nc > 1 and len(stats):
|
|
|
|
for i, c in enumerate(ap_class):
|
|
|
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
|
|
|
|
|
|
|
# Print speeds
|
|
|
|
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
|
|
|
|
if not training:
|
|
|
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
|
|
|
|
|
|
|
# Save JSON
|
|
|
|
if save_json and map50 and len(jdict):
|
|
|
|
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
|
|
|
|
f = 'detections_val2017_%s_results.json' % \
|
|
|
|
(weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
|
|
|
|
print('\nCOCO mAP with pycocotools... saving %s...' % f)
|
|
|
|
with open(f, 'w') as file:
|
|
|
|
json.dump(jdict, file)
|
|
|
|
|
|
|
|
try:
|
|
|
|
from pycocotools.coco import COCO
|
|
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
|
|
|
|
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
|
|
|
cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
|
|
|
|
cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
|
|
|
|
|
|
|
|
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
|
|
|
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
|
|
|
|
cocoEval.evaluate()
|
|
|
|
cocoEval.accumulate()
|
|
|
|
cocoEval.summarize()
|
|
|
|
map, map50 = cocoEval.stats[:2] # update to pycocotools results (mAP@0.5:0.95, mAP@0.5)
|
|
|
|
except:
|
|
|
|
print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
|
|
|
|
'See https://github.com/cocodataset/cocoapi/issues/356')
|
|
|
|
|
|
|
|
# Return results
|
|
|
|
maps = np.zeros(nc) + map
|
|
|
|
for i, c in enumerate(ap_class):
|
|
|
|
maps[c] = ap[i]
|
|
|
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser(prog='test.py')
|
|
|
|
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
|
|
|
|
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
|
|
|
|
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
|
|
|
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
|
|
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
|
|
|
|
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
|
|
|
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
|
|
|
|
parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
|
|
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
|
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
|
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
|
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
|
|
|
opt = parser.parse_args()
|
|
|
|
opt.save_json = opt.save_json or opt.data.endswith('coco.yaml')
|
|
|
|
opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] # find file
|
|
|
|
print(opt)
|
|
|
|
|
|
|
|
# task = 'val', 'test', 'study'
|
|
|
|
if opt.task in ['val', 'test']: # (default) run normally
|
|
|
|
test(opt.data,
|
|
|
|
opt.weights,
|
|
|
|
opt.batch_size,
|
|
|
|
opt.img_size,
|
|
|
|
opt.conf_thres,
|
|
|
|
opt.iou_thres,
|
|
|
|
opt.save_json,
|
|
|
|
opt.single_cls,
|
|
|
|
opt.augment)
|
|
|
|
|
|
|
|
elif opt.task == 'study': # run over a range of settings and save/plot
|
|
|
|
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
|
|
|
|
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
|
|
|
x = list(range(256, 1024, 64)) # x axis
|
|
|
|
y = [] # y axis
|
|
|
|
for i in x: # img-size
|
|
|
|
print('\nRunning %s point %s...' % (f, i))
|
|
|
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
|
|
|
|
y.append(r + t) # results and times
|
|
|
|
np.savetxt(f, y, fmt='%10.4g') # save
|
|
|
|
plot_study_txt(f, x) # plot
|