|
|
|
# Exports a pytorch *.pt model to *.onnx format. Example usage:
|
|
|
|
# $ export PYTHONPATH="$PWD"
|
|
|
|
# $ python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
import onnx
|
|
|
|
|
|
|
|
from models.common import *
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--weights', default='./weights/yolov5s.pt', help='model path RELATIVE to ./models/')
|
|
|
|
parser.add_argument('--img-size', default=640, help='inference size (pixels)')
|
|
|
|
parser.add_argument('--batch-size', default=1, help='batch size')
|
|
|
|
opt = parser.parse_args()
|
|
|
|
|
|
|
|
# Parameters
|
|
|
|
f = opt.weights.replace('.pt', '.onnx') # onnx filename
|
|
|
|
img = torch.zeros((opt.batch_size, 3, opt.img_size, opt.img_size)) # image size, (1, 3, 320, 192) iDetection
|
|
|
|
|
|
|
|
# Load pytorch model
|
|
|
|
google_utils.attempt_download(opt.weights)
|
|
|
|
model = torch.load(opt.weights)['model']
|
|
|
|
model.eval()
|
|
|
|
# model.fuse() # optionally fuse Conv2d + BatchNorm2d layers TODO
|
|
|
|
|
|
|
|
# Export to onnx
|
|
|
|
model.model[-1].export = True # set Detect() layer export=True
|
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=11)
|
|
|
|
|
|
|
|
# Check onnx model
|
|
|
|
model = onnx.load(f) # load onnx model
|
|
|
|
onnx.checker.check_model(model) # check onnx model
|
|
|
|
print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph
|
|
|
|
print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)
|