|
|
|
@ -58,14 +58,6 @@ def train(hyp):
|
|
|
|
|
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
|
|
|
|
|
yaml.dump(vars(opt), f, sort_keys=False)
|
|
|
|
|
|
|
|
|
|
# Log hyperparameters in tensorboard
|
|
|
|
|
if tb_writer:
|
|
|
|
|
tb_hparams_dict = hyp
|
|
|
|
|
tb_hparams_dict.update(vars(opt))
|
|
|
|
|
tb_hparams_dict['img_size_train'], tb_hparams_dict['img_size_test'] = tb_hparams_dict['img_size']
|
|
|
|
|
del tb_hparams_dict['img_size']
|
|
|
|
|
tb_writer.add_hparams(tb_hparams_dict, {})
|
|
|
|
|
|
|
|
|
|
epochs = opt.epochs # 300
|
|
|
|
|
batch_size = opt.batch_size # 64
|
|
|
|
|
weights = opt.weights # initial training weights
|
|
|
|
@ -194,6 +186,7 @@ def train(hyp):
|
|
|
|
|
# model._initialize_biases(cf.to(device))
|
|
|
|
|
plot_labels(labels, save_dir=log_dir)
|
|
|
|
|
if tb_writer:
|
|
|
|
|
tb_writer.add_hparams(hyp, {})
|
|
|
|
|
tb_writer.add_histogram('classes', c, 0)
|
|
|
|
|
|
|
|
|
|
# Check anchors
|
|
|
|
|