|
|
|
@ -16,25 +16,29 @@ from utils.datasets import *
|
|
|
|
|
from utils.utils import *
|
|
|
|
|
|
|
|
|
|
# Hyperparameters
|
|
|
|
|
hyp = {'optimizer': 'SGD', # ['adam', 'SGD', None] if none, default is SGD
|
|
|
|
|
hyp = {'optimizer': 'SGD', # ['Adam', 'SGD', ...] from torch.optim
|
|
|
|
|
'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
|
|
|
|
|
'momentum': 0.937, # SGD momentum/Adam beta1
|
|
|
|
|
'weight_decay': 5e-4, # optimizer weight decay
|
|
|
|
|
'giou': 0.05, # giou loss gain
|
|
|
|
|
'giou': 0.05, # GIoU loss gain
|
|
|
|
|
'cls': 0.5, # cls loss gain
|
|
|
|
|
'cls_pw': 1.0, # cls BCELoss positive_weight
|
|
|
|
|
'obj': 1.0, # obj loss gain (*=img_size/320 if img_size != 320)
|
|
|
|
|
'obj': 1.0, # obj loss gain (scale with pixels)
|
|
|
|
|
'obj_pw': 1.0, # obj BCELoss positive_weight
|
|
|
|
|
'iou_t': 0.20, # iou training threshold
|
|
|
|
|
'iou_t': 0.20, # IoU training threshold
|
|
|
|
|
'anchor_t': 4.0, # anchor-multiple threshold
|
|
|
|
|
'fl_gamma': 0.0, # focal loss gamma (efficientDet default is gamma=1.5)
|
|
|
|
|
'fl_gamma': 0.0, # focal loss gamma (efficientDet default gamma=1.5)
|
|
|
|
|
'hsv_h': 0.015, # image HSV-Hue augmentation (fraction)
|
|
|
|
|
'hsv_s': 0.7, # image HSV-Saturation augmentation (fraction)
|
|
|
|
|
'hsv_v': 0.4, # image HSV-Value augmentation (fraction)
|
|
|
|
|
'degrees': 0.0, # image rotation (+/- deg)
|
|
|
|
|
'translate': 0.5, # image translation (+/- fraction)
|
|
|
|
|
'scale': 0.5, # image scale (+/- gain)
|
|
|
|
|
'shear': 0.0} # image shear (+/- deg)
|
|
|
|
|
'shear': 0.0, # image shear (+/- deg)
|
|
|
|
|
'perspective': 0.0, # image perspective (+/- fraction), range 0-0.001
|
|
|
|
|
'flipud': 0.0, # image flip up-down (probability)
|
|
|
|
|
'fliplr': 0.5, # image flip left-right (probability)
|
|
|
|
|
'mixup': 0.0} # image mixup (probability)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(hyp, tb_writer, opt, device):
|
|
|
|
@ -47,8 +51,7 @@ def train(hyp, tb_writer, opt, device):
|
|
|
|
|
results_file = log_dir + os.sep + 'results.txt'
|
|
|
|
|
epochs, batch_size, total_batch_size, weights, rank = \
|
|
|
|
|
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank
|
|
|
|
|
# TODO: Init DDP logging. Only the first process is allowed to log.
|
|
|
|
|
# Since I see lots of print here, the logging configuration is skipped here. We may see repeated outputs.
|
|
|
|
|
# TODO: Use DDP logging. Only the first process is allowed to log.
|
|
|
|
|
|
|
|
|
|
# Save run settings
|
|
|
|
|
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
|
|
|
@ -99,7 +102,7 @@ def train(hyp, tb_writer, opt, device):
|
|
|
|
|
else:
|
|
|
|
|
pg0.append(v) # all else
|
|
|
|
|
|
|
|
|
|
if hyp['optimizer'] == 'adam': # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
|
|
|
|
if hyp['optimizer'] == 'Adam':
|
|
|
|
|
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
|
|
|
|
else:
|
|
|
|
|
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
|
|
|
@ -110,9 +113,9 @@ def train(hyp, tb_writer, opt, device):
|
|
|
|
|
del pg0, pg1, pg2
|
|
|
|
|
|
|
|
|
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
|
|
|
|
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
|
|
|
|
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.8 + 0.2 # cosine
|
|
|
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
|
|
|
|
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
|
|
|
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
|
|
|
|
|
|
|
|
|
# Load Model
|
|
|
|
|