diff --git a/tutorial.ipynb b/tutorial.ipynb index e9917b2..d3418cc 100644 --- a/tutorial.ipynb +++ b/tutorial.ipynb @@ -74,7 +74,7 @@ "clear_output()\n", "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))" ], - "execution_count": 1, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -212,7 +212,7 @@ "gdrive_download('1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43','coco2017val.zip') # val2017 dataset\n", "!mv ./coco ../ # move folder alongside /yolov5" ], - "execution_count": 10, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -238,7 +238,7 @@ "# Run YOLOv5x on COCO val2017\n", "!python test.py --weights yolov5x.pt --data coco.yaml --img 672" ], - "execution_count": 15, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -352,7 +352,7 @@ "gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip') # coco128 dataset\n", "!mv ./coco128 ../ # move folder alongside /yolov5" ], - "execution_count": 16, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -405,7 +405,7 @@ "# Train YOLOv5s on coco128 for 3 epochs\n", "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --nosave --cache" ], - "execution_count": 24, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -622,7 +622,7 @@ "colab_type": "text" }, "source": [ - "Training losses and performance metrics are saved to Tensorboard and also to a `runs/exp0/results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (orange), and from pretrained `yolov5s.pt` (blue)." + "Training losses and performance metrics are saved to Tensorboard and also to a `runs/exp0/results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (blue), and from pretrained `yolov5s.pt` (orange)." ] }, { @@ -639,7 +639,7 @@ "source": [ "from utils.utils import plot_results; plot_results() # plot results.txt files as results.png" ], - "execution_count": 29, + "execution_count": null, "outputs": [ { "output_type": "execute_result", @@ -701,7 +701,7 @@ "!rm -rf yolov5 && git clone https://github.com/ultralytics/yolov5\n", "%cd yolov5" ], - "execution_count": 9, + "execution_count": null, "outputs": [] }, {