|
|
|
@ -198,10 +198,10 @@ def train(hyp):
|
|
|
|
|
model.names = data_dict['names']
|
|
|
|
|
|
|
|
|
|
#save hyperparamter and training options in run folder
|
|
|
|
|
with open(os.path.join(log_dir, 'hyp.yaml', 'w')) as f:
|
|
|
|
|
with open(os.path.join(log_dir, 'hyp.yaml'), 'w') as f:
|
|
|
|
|
yaml.dump(hyp, f)
|
|
|
|
|
|
|
|
|
|
with open(os.path.join(log_dir, 'opt.yaml', 'w')) as f:
|
|
|
|
|
with open(os.path.join(log_dir, 'opt.yaml'), 'w') as f:
|
|
|
|
|
yaml.dump(opt, f)
|
|
|
|
|
|
|
|
|
|
# Class frequency
|
|
|
|
@ -294,7 +294,7 @@ def train(hyp):
|
|
|
|
|
|
|
|
|
|
# Plot
|
|
|
|
|
if ni < 3:
|
|
|
|
|
f = 'train_batch%g.jpg' % i # filename
|
|
|
|
|
f = os.path.join(log_dir, 'train_batch%g.jpg' % i) # filename
|
|
|
|
|
res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
|
|
|
|
|
if tb_writer:
|
|
|
|
|
tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
|
|
|
|
@ -385,6 +385,7 @@ if __name__ == '__main__':
|
|
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
|
|
|
|
|
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
|
|
|
|
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
|
|
|
|
|
parser.add_argument('--resume_from_run', type=str, default='', 'resume training from last.pt in this dir')
|
|
|
|
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
|
|
|
|
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
|
|
|
|
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
|
|
|
@ -398,6 +399,12 @@ if __name__ == '__main__':
|
|
|
|
|
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
|
|
|
|
parser.add_argument('--hyp', type=str, default='', help ='path to hyp yaml file')
|
|
|
|
|
opt = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
if opt.resume and not opt.resume_from_run:
|
|
|
|
|
last = get_latest_run()
|
|
|
|
|
print(f'WARNING: No run provided to resume from. Resuming from most recent run found at {last}')
|
|
|
|
|
else:
|
|
|
|
|
last = opt.resume_from_run
|
|
|
|
|
opt.weights = last if opt.resume else opt.weights
|
|
|
|
|
opt.cfg = check_file(opt.cfg) # check file
|
|
|
|
|
opt.data = check_file(opt.data) # check file
|
|
|
|
|