|
|
|
@ -20,10 +20,12 @@ def test(data,
|
|
|
|
|
model=None,
|
|
|
|
|
dataloader=None,
|
|
|
|
|
fast=False,
|
|
|
|
|
verbose=False): # 0 fast, 1 accurate
|
|
|
|
|
verbose=False,
|
|
|
|
|
half=False): # FP16
|
|
|
|
|
# Initialize/load model and set device
|
|
|
|
|
if model is None:
|
|
|
|
|
device = torch_utils.select_device(opt.device, batch_size=batch_size)
|
|
|
|
|
half &= device.type != 'cpu' # half precision only supported on CUDA
|
|
|
|
|
|
|
|
|
|
# Remove previous
|
|
|
|
|
for f in glob.glob('test_batch*.jpg'):
|
|
|
|
@ -35,6 +37,8 @@ def test(data,
|
|
|
|
|
torch_utils.model_info(model)
|
|
|
|
|
# model.fuse()
|
|
|
|
|
model.to(device)
|
|
|
|
|
if half:
|
|
|
|
|
model.half() # to FP16
|
|
|
|
|
|
|
|
|
|
if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
|
|
|
|
model = nn.DataParallel(model)
|
|
|
|
@ -72,24 +76,27 @@ def test(data,
|
|
|
|
|
|
|
|
|
|
seen = 0
|
|
|
|
|
model.eval()
|
|
|
|
|
_ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None # run once
|
|
|
|
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
|
|
|
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
|
|
|
|
names = model.names if hasattr(model, 'names') else model.module.names
|
|
|
|
|
coco91class = coco80_to_coco91_class()
|
|
|
|
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
|
|
|
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
|
|
|
|
|
loss = torch.zeros(3, device=device)
|
|
|
|
|
jdict, stats, ap, ap_class = [], [], [], []
|
|
|
|
|
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
|
|
|
|
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
|
|
|
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
|
|
|
|
img = img.to(device)
|
|
|
|
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
|
|
|
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
|
|
|
|
targets = targets.to(device)
|
|
|
|
|
nb, _, height, width = imgs.shape # batch size, channels, height, width
|
|
|
|
|
nb, _, height, width = img.shape # batch size, channels, height, width
|
|
|
|
|
whwh = torch.Tensor([width, height, width, height]).to(device)
|
|
|
|
|
|
|
|
|
|
# Disable gradients
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
# Run model
|
|
|
|
|
t = torch_utils.time_synchronized()
|
|
|
|
|
inf_out, train_out = model(imgs, augment=augment) # inference and training outputs
|
|
|
|
|
inf_out, train_out = model(img, augment=augment) # inference and training outputs
|
|
|
|
|
t0 += torch_utils.time_synchronized() - t
|
|
|
|
|
|
|
|
|
|
# Compute loss
|
|
|
|
@ -125,7 +132,7 @@ def test(data,
|
|
|
|
|
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
|
|
|
|
image_id = int(Path(paths[si]).stem.split('_')[-1])
|
|
|
|
|
box = pred[:, :4].clone() # xyxy
|
|
|
|
|
scale_coords(imgs[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
|
|
|
|
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
|
|
|
|
box = xyxy2xywh(box) # xywh
|
|
|
|
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
|
|
|
|
for p, b in zip(pred.tolist(), box.tolist()):
|
|
|
|
@ -168,9 +175,9 @@ def test(data,
|
|
|
|
|
# Plot images
|
|
|
|
|
if batch_i < 1:
|
|
|
|
|
f = 'test_batch%g_gt.jpg' % batch_i # filename
|
|
|
|
|
plot_images(imgs, targets, paths, f, names) # ground truth
|
|
|
|
|
plot_images(img, targets, paths, f, names) # ground truth
|
|
|
|
|
f = 'test_batch%g_pred.jpg' % batch_i
|
|
|
|
|
plot_images(imgs, output_to_target(output, width, height), paths, f, names) # predictions
|
|
|
|
|
plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
|
|
|
|
|
|
|
|
|
|
# Compute statistics
|
|
|
|
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
|
|
|
@ -241,6 +248,7 @@ if __name__ == '__main__':
|
|
|
|
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
|
|
|
|
|
parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
|
|
|
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
|
|
|
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
|
|
|
|
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
|
|
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
|
|
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
|
|
|
|