|
|
|
@ -52,6 +52,12 @@ def train(hyp):
|
|
|
|
|
best = wdir + 'best.pt'
|
|
|
|
|
results_file = log_dir + os.sep + 'results.txt'
|
|
|
|
|
|
|
|
|
|
# Save run settings
|
|
|
|
|
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
|
|
|
|
yaml.dump(hyp, f, sort_keys=False)
|
|
|
|
|
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
|
|
|
|
|
yaml.dump(vars(opt), f, sort_keys=False)
|
|
|
|
|
|
|
|
|
|
epochs = opt.epochs # 300
|
|
|
|
|
batch_size = opt.batch_size # 64
|
|
|
|
|
weights = opt.weights # initial training weights
|
|
|
|
@ -171,12 +177,6 @@ def train(hyp):
|
|
|
|
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
|
|
|
|
model.names = data_dict['names']
|
|
|
|
|
|
|
|
|
|
# Save run settings
|
|
|
|
|
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
|
|
|
|
yaml.dump(hyp, f, sort_keys=False)
|
|
|
|
|
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
|
|
|
|
|
yaml.dump(vars(opt), f, sort_keys=False)
|
|
|
|
|
|
|
|
|
|
# Class frequency
|
|
|
|
|
labels = np.concatenate(dataset.labels, 0)
|
|
|
|
|
c = torch.tensor(labels[:, 0]) # classes
|
|
|
|
|