diff --git a/train.py b/train.py index 4238713..a572a37 100644 --- a/train.py +++ b/train.py @@ -207,6 +207,10 @@ def train(hyp): image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w) dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx + # Update mosaic border + # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) + # dataset.mosaic_border = [b - imgsz, -b] # height, width borders + mloss = torch.zeros(4, device=device) # mean losses print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size')) pbar = tqdm(enumerate(dataloader), total=nb) # progress bar diff --git a/utils/datasets.py b/utils/datasets.py index 69bed47..1d423e4 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -307,7 +307,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing self.image_weights = image_weights self.rect = False if image_weights else rect self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) - self.mosaic_border = None + self.mosaic_border = [-img_size // 2, -img_size // 2] self.stride = stride @@ -588,8 +588,7 @@ def load_mosaic(self, index): labels4 = [] s = self.img_size - border = [-s // 2, -s // 2] # self.mosaic_border - yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in border] # mosaic center x, y + yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices for i, index in enumerate(indices): # Load image @@ -637,7 +636,7 @@ def load_mosaic(self, index): translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], - border=border) # border to remove + border=self.mosaic_border) # border to remove return img4, labels4