|
|
|
@ -90,9 +90,9 @@ class Model(nn.Module):
|
|
|
|
|
yi = self.forward_once(xi)[0] # forward
|
|
|
|
|
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
|
|
|
|
yi[..., :4] /= si # de-scale
|
|
|
|
|
if fi is 2:
|
|
|
|
|
if fi == 2:
|
|
|
|
|
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
|
|
|
|
elif fi is 3:
|
|
|
|
|
elif fi == 3:
|
|
|
|
|
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
|
|
|
|
y.append(yi)
|
|
|
|
|
return torch.cat(y, 1), None # augmented inference, train
|
|
|
|
@ -148,6 +148,7 @@ class Model(nn.Module):
|
|
|
|
|
print('Fusing layers... ', end='')
|
|
|
|
|
for m in self.model.modules():
|
|
|
|
|
if type(m) is Conv:
|
|
|
|
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
|
|
|
|
|
m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv
|
|
|
|
|
m.bn = None # remove batchnorm
|
|
|
|
|
m.forward = m.fuseforward # update forward
|
|
|
|
|