|
|
|
@ -46,7 +46,7 @@ def detect(save_img=False):
|
|
|
|
|
dataset = LoadImages(source, img_size=imgsz)
|
|
|
|
|
|
|
|
|
|
# Get names and colors
|
|
|
|
|
names = model.names if hasattr(model, 'names') else model.modules.names
|
|
|
|
|
names = model.module.names if hasattr(model, 'module') else model.names
|
|
|
|
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
|
|
|
|
|
|
|
|
|
|
# Run inference
|
|
|
|
@ -80,6 +80,7 @@ def detect(save_img=False):
|
|
|
|
|
p, s, im0 = path, '', im0s
|
|
|
|
|
|
|
|
|
|
save_path = str(Path(out) / Path(p).name)
|
|
|
|
|
txt_path = save_path[:save_path.rfind('.')] + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
|
|
|
|
|
s += '%gx%g ' % img.shape[2:] # print string
|
|
|
|
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
|
|
|
|
if det is not None and len(det):
|
|
|
|
@ -95,12 +96,8 @@ def detect(save_img=False):
|
|
|
|
|
for *xyxy, conf, cls in det:
|
|
|
|
|
if save_txt: # Write to file
|
|
|
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
|
|
|
|
if dataset.frame == 0:
|
|
|
|
|
with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as f:
|
|
|
|
|
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
|
|
|
|
|
else:
|
|
|
|
|
with open(save_path[:save_path.rfind('.')] + '_' + str(dataset.frame) + '.txt', 'a') as f:
|
|
|
|
|
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
|
|
|
|
|
with open(txt_path + '.txt', 'a') as f:
|
|
|
|
|
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
|
|
|
|
|
|
|
|
|
|
if save_img or view_img: # Add bbox to image
|
|
|
|
|
label = '%s %.2f' % (names[int(cls)], conf)
|
|
|
|
@ -160,3 +157,8 @@ if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
detect()
|
|
|
|
|
|
|
|
|
|
# Update all models
|
|
|
|
|
# for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
|
|
|
|
|
# detect()
|
|
|
|
|
# create_pretrained(opt.weights, opt.weights)
|
|
|
|
|