From 4e2d24602d246231694ba1b4d3bf3bd01f027ea4 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Sat, 4 Jul 2020 23:07:26 -0700 Subject: [PATCH] update yolo.py --- models/yolo.py | 20 ++++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) diff --git a/models/yolo.py b/models/yolo.py index 7cc86b2..66bdb7d 100644 --- a/models/yolo.py +++ b/models/yolo.py @@ -59,10 +59,14 @@ class Model(nn.Module): # Build strides, anchors m = self.model[-1] # Detect() - m.stride = torch.tensor([128 / x.shape[-2] for x in self.forward(torch.zeros(1, ch, 128, 128))]) # forward - m.anchors /= m.stride.view(-1, 1, 1) - check_anchor_order(m) - self.stride = m.stride + if isinstance(m, Detect): + s = 128 # 2x min stride + m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward + m.anchors /= m.stride.view(-1, 1, 1) + check_anchor_order(m) + self.stride = m.stride + self._initialize_biases() # only run once + # print('Strides: %s' % m.stride.tolist()) # Init weights, biases torch_utils.initialize_weights(self) @@ -146,7 +150,7 @@ class Model(nn.Module): def parse_model(md, ch): # model_dict, input_channels(3) - print('\n%3s%15s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) + print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = md['anchors'], md['nc'], md['depth_multiple'], md['width_multiple'] na = (len(anchors[0]) // 2) # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) @@ -161,7 +165,7 @@ def parse_model(md, ch): # model_dict, input_channels(3) pass n = max(round(n * gd), 1) if n > 1 else n # depth gain - if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, BottleneckCSP, CrossConv]: + if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]: c1, c2 = ch[f], args[0] # Normal @@ -182,7 +186,7 @@ def parse_model(md, ch): # model_dict, input_channels(3) # c2 = make_divisible(c2, 8) if c2 != no else c2 args = [c1, c2, *args[1:]] - if m is BottleneckCSP: + if m in [BottleneckCSP, C3]: args.insert(2, n) n = 1 elif m is nn.BatchNorm2d: @@ -198,7 +202,7 @@ def parse_model(md, ch): # model_dict, input_channels(3) t = str(m)[8:-2].replace('__main__.', '') # module type np = sum([x.numel() for x in m_.parameters()]) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params - print('%3s%15s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print + print('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) ch.append(c2)