|
|
|
@ -9,7 +9,7 @@ import logging
|
|
|
|
|
from contextlib import contextmanager
|
|
|
|
|
from copy import copy
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
from sys import platform
|
|
|
|
|
import platform
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
|
import matplotlib
|
|
|
|
@ -66,7 +66,7 @@ def get_latest_run(search_dir='./runs'):
|
|
|
|
|
|
|
|
|
|
def check_git_status():
|
|
|
|
|
# Suggest 'git pull' if repo is out of date
|
|
|
|
|
if platform in ['linux', 'darwin'] and not os.path.isfile('/.dockerenv'):
|
|
|
|
|
if platform.system() in ['Linux', 'Darwin'] and not os.path.isfile('/.dockerenv'):
|
|
|
|
|
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
|
|
|
|
|
if 'Your branch is behind' in s:
|
|
|
|
|
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')
|
|
|
|
@ -126,7 +126,7 @@ def check_anchor_order(m):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_file(file):
|
|
|
|
|
# Searches for file if not found locally
|
|
|
|
|
# Search for file if not found
|
|
|
|
|
if os.path.isfile(file) or file == '':
|
|
|
|
|
return file
|
|
|
|
|
else:
|
|
|
|
@ -137,21 +137,25 @@ def check_file(file):
|
|
|
|
|
|
|
|
|
|
def check_dataset(dict):
|
|
|
|
|
# Download dataset if not found
|
|
|
|
|
train, val = os.path.abspath(dict['train']), os.path.abspath(dict['val']) # data paths
|
|
|
|
|
if not (os.path.exists(train) and os.path.exists(val)):
|
|
|
|
|
print('\nWARNING: Dataset not found, nonexistant paths: %s' % [train, val])
|
|
|
|
|
if 'download' in dict:
|
|
|
|
|
s = dict['download']
|
|
|
|
|
print('Attempting autodownload from: %s' % s)
|
|
|
|
|
if s.startswith('http') and s.endswith('.zip'): # URL
|
|
|
|
|
f = Path(s).name # filename
|
|
|
|
|
torch.hub.download_url_to_file(s, f)
|
|
|
|
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f))
|
|
|
|
|
else: # bash script
|
|
|
|
|
r = os.system(s)
|
|
|
|
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
|
|
|
|
else:
|
|
|
|
|
Exception('Dataset autodownload unavailable.')
|
|
|
|
|
val, s = dict.get('val'), dict.get('download')
|
|
|
|
|
if val and len(val):
|
|
|
|
|
val = [os.path.abspath(x) for x in (val if isinstance(val, list) else [val])] # val path
|
|
|
|
|
if not all(os.path.exists(x) for x in val):
|
|
|
|
|
print('\nWARNING: Dataset not found, nonexistant paths: %s' % [*val])
|
|
|
|
|
if s and len(s): # download script
|
|
|
|
|
print('Attempting autodownload from: %s' % s)
|
|
|
|
|
if s.startswith('http') and s.endswith('.zip'): # URL
|
|
|
|
|
f = Path(s).name # filename
|
|
|
|
|
if platform.system() == 'Darwin': # avoid MacOS python requests certificate error
|
|
|
|
|
os.system('curl -L %s -o %s' % (s, f))
|
|
|
|
|
else:
|
|
|
|
|
torch.hub.download_url_to_file(s, f)
|
|
|
|
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
|
|
|
|
|
else: # bash script
|
|
|
|
|
r = os.system(s)
|
|
|
|
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
|
|
|
|
else:
|
|
|
|
|
raise Exception('Dataset not found.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def make_divisible(x, divisor):
|
|
|
|
|