|
|
|
@ -20,7 +20,7 @@ class Detect(nn.Module):
|
|
|
|
|
self.export = False # onnx export
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x = x.copy() # for profiling
|
|
|
|
|
x = x.copy() # for profiling
|
|
|
|
|
z = [] # inference output
|
|
|
|
|
self.training |= self.export
|
|
|
|
|
for i in range(self.nl):
|
|
|
|
@ -67,6 +67,25 @@ class Model(nn.Module):
|
|
|
|
|
print('')
|
|
|
|
|
|
|
|
|
|
def forward(self, x, augment=False, profile=False):
|
|
|
|
|
if augment:
|
|
|
|
|
img_size = x.shape[-2:] # height, width
|
|
|
|
|
s = [0.83, 0.67] # scales
|
|
|
|
|
y = []
|
|
|
|
|
for i, xi in enumerate((x,
|
|
|
|
|
torch_utils.scale_img(x.flip(3), s[0], same_shape=False), # flip-lr and scale
|
|
|
|
|
torch_utils.scale_img(x, s[1], same_shape=False), # scale
|
|
|
|
|
)):
|
|
|
|
|
# cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
|
|
|
|
|
y.append(self.forward_once(xi)[0])
|
|
|
|
|
|
|
|
|
|
y[1][..., :4] /= s[0] # scale
|
|
|
|
|
y[1][..., 0] = img_size[1] - y[1][..., 0] # flip lr
|
|
|
|
|
y[2][..., :4] /= s[1] # scale
|
|
|
|
|
return torch.cat(y, 1), None # augmented inference, train
|
|
|
|
|
else:
|
|
|
|
|
return self.forward_once(x, profile) # single-scale inference, train
|
|
|
|
|
|
|
|
|
|
def forward_once(self, x, profile=False):
|
|
|
|
|
y, dt = [], [] # outputs
|
|
|
|
|
for m in self.model:
|
|
|
|
|
if m.f != -1: # if not from previous layer
|
|
|
|
|