diff --git a/utils/datasets.py b/utils/datasets.py index aee891c..69bed47 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -62,7 +62,7 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa class LoadImages: # for inference - def __init__(self, path, img_size=416): + def __init__(self, path, img_size=640): path = str(Path(path)) # os-agnostic files = [] if os.path.isdir(path): @@ -139,7 +139,7 @@ class LoadImages: # for inference class LoadWebcam: # for inference - def __init__(self, pipe=0, img_size=416): + def __init__(self, pipe=0, img_size=640): self.img_size = img_size if pipe == '0': @@ -204,7 +204,7 @@ class LoadWebcam: # for inference class LoadStreams: # multiple IP or RTSP cameras - def __init__(self, sources='streams.txt', img_size=416): + def __init__(self, sources='streams.txt', img_size=640): self.mode = 'images' self.img_size = img_size @@ -277,7 +277,7 @@ class LoadStreams: # multiple IP or RTSP cameras class LoadImagesAndLabels(Dataset): # for training/testing - def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, + def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, cache_images=False, single_cls=False, stride=32, pad=0.0): try: path = str(Path(path)) # os-agnostic @@ -307,6 +307,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing self.image_weights = image_weights self.rect = False if image_weights else rect self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) + self.mosaic_border = None + self.stride = stride + # Define labels self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') @@ -585,7 +588,8 @@ def load_mosaic(self, index): labels4 = [] s = self.img_size - xc, yc = [int(random.uniform(s * 0.5, s * 1.5)) for _ in range(2)] # mosaic center x, y + border = [-s // 2, -s // 2] # self.mosaic_border + yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in border] # mosaic center x, y indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices for i, index in enumerate(indices): # Load image @@ -633,12 +637,12 @@ def load_mosaic(self, index): translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], - border=-s // 2) # border to remove + border=border) # border to remove return img4, labels4 -def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): +def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): @@ -671,13 +675,13 @@ def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scale return img, ratio, (dw, dh) -def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=0): +def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=(0, 0)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 # targets = [cls, xyxy] - height = img.shape[0] + border * 2 - width = img.shape[1] + border * 2 + height = img.shape[0] + border[0] * 2 # shape(h,w,c) + width = img.shape[1] + border[1] * 2 # Rotation and Scale R = np.eye(3) @@ -689,8 +693,8 @@ def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, # Translation T = np.eye(3) - T[0, 2] = random.uniform(-translate, translate) * img.shape[0] + border # x translation (pixels) - T[1, 2] = random.uniform(-translate, translate) * img.shape[1] + border # y translation (pixels) + T[0, 2] = random.uniform(-translate, translate) * img.shape[1] + border[1] # x translation (pixels) + T[1, 2] = random.uniform(-translate, translate) * img.shape[0] + border[0] # y translation (pixels) # Shear S = np.eye(3) @@ -699,7 +703,7 @@ def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, # Combined rotation matrix M = S @ T @ R # ORDER IS IMPORTANT HERE!! - if (border != 0) or (M != np.eye(3)).any(): # image changed + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114)) # Transform label coordinates