Merge remote-tracking branch 'origin/master'

pull/1/head
Glenn Jocher 5 years ago
commit a03adb5ab8

@ -158,7 +158,7 @@ if __name__ == '__main__':
with torch.no_grad():
detect()
# Update all models
# # Update all models
# for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
# detect()
# create_pretrained(opt.weights, opt.weights)
# detect()
# create_pretrained(opt.weights, opt.weights)

@ -1,4 +1,4 @@
"""Exports a YOLOv5 *.pt model to *.onnx and *.torchscript formats
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
Usage:
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
@ -6,8 +6,6 @@ Usage:
import argparse
import onnx
from models.common import *
from utils import google_utils
@ -21,7 +19,7 @@ if __name__ == '__main__':
print(opt)
# Input
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
# Load PyTorch model
google_utils.attempt_download(opt.weights)
@ -30,20 +28,22 @@ if __name__ == '__main__':
model.model[-1].export = True # set Detect() layer export=True
_ = model(img) # dry run
# Export to torchscript
# TorchScript export
try:
f = opt.weights.replace('.pt', '.torchscript') # filename
ts = torch.jit.trace(model, img)
ts.save(f)
print('Torchscript export success, saved as %s' % f)
except:
print('Torchscript export failed.')
print('TorchScript export success, saved as %s' % f)
except Exception as e:
print('TorchScript export failed: %s' % e)
# Export to ONNX
# ONNX export
try:
import onnx
f = opt.weights.replace('.pt', '.onnx') # filename
model.fuse() # only for ONNX
torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'],
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
output_names=['output']) # output_names=['classes', 'boxes']
# Checks
@ -51,5 +51,5 @@ if __name__ == '__main__':
onnx.checker.check_model(onnx_model) # check onnx model
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable representation of the graph
print('ONNX export success, saved as %s\nView with https://github.com/lutzroeder/netron' % f)
except:
print('ONNX export failed.')
except Exception as e:
print('ONNX export failed: %s' % e)

Loading…
Cancel
Save